Signal identifier for GLONASS L1 C/A was changed internally to be `1G`
instead of the '1C' originally conceived from the navigation software.
Also, forces PRN number update from decoding interface
Fixes bug in TOW update when a new value has been computed. This adds a
new flag to keep track of TOW update given the tk component. The code
fix improves the pseudorange measurement for code
Forces conversion of semicircles to radians units in some GNAV Almanac
parameters. In addition, adds safeguards in code to avoid invalid
slot number identification.
Adds code to update the almanac information for satellites when decoded
by reducing the flags for the update. Almanac update is now reported
when the 2 required strings are decoded.
Adds conversion from relative code to data bits while decoding GLONASS
GNAV data. It also fixes bugs with CRC computation and extraction of
data from navigation message
Adds code to solve the shared frequency channels for GLONASS satellites
during acq and trk, it is now decode responsability to fix the identifier
when decoding of ephemeris happens. It also adds more details in tracking
plotting and fixes silly bug that created false alarm.
Adds tracking results plot for GLONASS processing following code for
GPS. Also fix a couple of bugs in the code and address bugs from
acq and trk modules
Starts merging process of the acquisition and tracking code for GLONASS
processing developed by Gabriel Araujo. Fixes compile warnings and
errors introduced during rebase operation
Fixes GLONASS L1 CA telemetry decoder and creating connections with
observables blocks before PVT computation. Fixes documentation and code
style in the block
Packages using CMake often use file(GLOB ...) to retrieve a list of
source files. As this is based on readdir(), the resulting file list
is unsorted. A common use case is to pass this list directly to
add_executable or add_library. But as the order is unpredictable, the
binaries are not reproducible (because the order in which the objects
are linked will vary).
See https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=824263
message system. Removing the deprecated channel internal queue and its
references. Some tests that are using the old channel queue are disabled
in this version
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
decoding: Changes in the flowgraph and in the configuration files to mix
channels from different GNSS systems in the same receiver. Hybrid
observables and PVT under construction.
The changes in the configuration file parameter names are NOT backward
compatible. The receiver can still work as usual in single GNSS system
mode but some modification on configuration files are required. Use the
example provided of Hybrid configuration file.
- Bug fixes at Galileo telemetry decoder state machine
- Bug fixes at Galileo Ephemeris decoder (two complement's data interpreted as unsigned, mismatch at the LSB weights)
Galileo KML output is avalable!!
Galileo RINEX is still under construction
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@433 64b25241-fba3-4117-9849-534c7e92360d
Bug fix in galileo tracking
Several improvements in Galileo telemetry decoder.
Code cleaning in observables
Galileo PVT is able to decode Galileo time and get satellite ECEF positions
Galileo PVT soluton is still under development
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@432 64b25241-fba3-4117-9849-534c7e92360d
- Changes in Galileo telemetry decoding (still under construction)
- Bug correction in tracking blocks that could cause random segmentation faults on some configurations
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@431 64b25241-fba3-4117-9849-534c7e92360d
- The GNSS-SDR code-based Observable generation algorithm for GPS L1 C/A was migrated from common TX time to common RX time. One of the main reasons is that the common TX algorithm was incompatible with the standard RINEX observables, wich requires the oservables at the same time of reception.
- Using common Rx time, the code was simplified and now requires less memory due to the lack of symbol buffer
- Now it is possible to use standard RINEX post processing software (gpstk and rtklib for instance) to get PVT and the obtained precision is comparable to the internal Least Squares solver. It is possible to use also the carrier phase observable, but is still experimental.
- The default RINEX version output was set to 2.11 in this revision. RINEX 3.00 is under verification now.
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@364 64b25241-fba3-4117-9849-534c7e92360d
- Gps telemetry decoder and PVT now uses independent queues for ephemeris, iono, utc_model and almanac. The old gps_navigation_queue is now deprecated and it is removed from the implementation. This affect almost all the PVT and Rinex printer classes.
- Rinex printer class updated to use the new ephemeris, iono, utc_model objects
Bug fixes and correction:
- The pseudorange generation now is based on the computed TOW for each received symbol. The History_Shift computation become simplier in this way. This modification is also a solution for a bug where the pseudoranges became temporally invalid when the TOW is updated (that happen every 6 secons!)
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@343 64b25241-fba3-4117-9849-534c7e92360d
- Updated all available trackings to generate the tracking_timestamp_secs taking into account the remainder code phase.
- Updated the telemetry decoder to track the number of symbol shifted from the preamble start symbol (to be used in observables).
- Updated observables to align the reference channel symbol with the corresponding symbols in the other channels and compute pseudorranges using the common transmission time algorithm.
- Updated PVT to independize the display output rate from the RINEX and KML log files. New options available in config file!
- Some minor improvements and code cleaning.
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@193 64b25241-fba3-4117-9849-534c7e92360d
Experimental storage of ephemeris in RINEX NAV file.
Some double variables are now int.
The nav message header and data Rinex printer handles both versions 2.11 and 3.01.
Change of filename: rinex_2_1_printer is now rinex_printer.
Class rinex_printer is now Rinex_Printer.
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@117 64b25241-fba3-4117-9849-534c7e92360d
- The executable file and the default configuration file is now changed from "./install/mercurio" and "./conf/mercurio.conf" to "./install/gnss-sdr" and "./conf/gnss-sdr.conf", respectively.
- Configuration file structure changed to define in a single entry the internal sampling frequency (after the signal conditioner). NOTICE that this change affects the all the adapters (acquisition, tracking, telemetry_decoder, observables, and PVT). All the adapters are now modified to work with this feature.
- Moved several in-line GPS L1 CA parameters (a.k.a magic numbers..) to ./src/core/system_parameters/GPS_L1_CA.h definition file.
- Tracking blocks now uses DOUBLE values in their outputs.
- Observables and PVT now are separated. PVT and their associated libraries are moved to ./src/algorithms/PVT
- Temporarily disabled the RINEX output (I am working on that!)
- GNSS-SDR screen output now gives extended debug information of the receiver status and events. In the future, this output will be redirected to a log file.
- Bug fixes:
- FILE_SIGNAL_SOURCE now works correctly when the user configures GNSS-SDR to process the entire file.
- GPS_L1_CA_DLL_PLL now computes correctly the PRN start values.
- GPS_L1_CA_DLL_FLL_PLL now computes correctly the PRN start values.
- Several modifications in GPS_L1_CA_Telemetry_Decoder, GPS_L1_CA_Observables, and GPS_L1_CA_PVT modules to fix the GPS position computation.
- New features
- Tracking blocks perform a signal integrity check against NaN outliers before the correlation process.
- Tracking and PVT binary dump options are now documented and we provide MATLAB libraries and sample files to read it. Available in ./utils/matlab" and "./utils/matlab/libs"
- Observables output rate can be configured. This option enables the GPS L1 CA PVT computation at a maximum rate of 1ms.
- GPS_L1_CA_PVT now can perform a moving average Latitude, Longitude, and Altitude output for each of the Observables output. It is configurable using the configuration file.
- Added Google Earth compatible Keyhole Markup Language (KML) output writer class (./src/algorithms/PVT/libs/kml_printer.h and ./src/algorithms/PVT/libs/kml_printer.cc ). You can see the receiver position directly using Google Earth.
- We provide a master configuration file which includes an in-line documentation with all the new (and old) options. It can be found in ./conf/master.conf
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@84 64b25241-fba3-4117-9849-534c7e92360d
New tracking libraries:
- tracking_discriminators: Library with a set of code tracking and carrier tracking discriminators that is used by the tracking algorithms. (fully documented, including math algorithms using doxygen!)
- tracking_2rd_DLL_filter: Class that implements 2 order DLL filter for code tracking loop.
- tracking_2rd_PLL_filter: Class that implements 2 order PLL filter for carrier tracking loop.
- tracking_FLL_PLL_filter: Class that implements hybrid FLL and PLL filter for tracking carrier loop.
- CN_estimators: Library with a set of Carrier to Noise estimators and lock detectors. (fully documented, including math algorithms using doxygen!)
Tracking:
- gps_l1_ca_dll_pll_tracking: The existing DLL + PLL tracking module, which is the K.Borre and D.Akos one, is now completely re-factored. Now uses the above described libraries.
- gps_l1_ca_dll_fll_pll_tracking: This is a brand new tracking module, which implements the FLL assisted PLL described in Kaplan (2nd edition). (also documentedwith references)
Configuration options:
- The following tracking parameters are added:
;######### TRACKING CONFIG ############
; Tracking.implementation=GPS_L1_CA_DLL_PLL_Tracking or GPS_L1_CA_DLL_FLL_PLL_Tracking
Tracking.implementation=GPS_L1_CA_DLL_FLL_PLL_Tracking
;PLL filter bandwidth in Hz.
Tracking.pll_bw_hz=50.0;
;DLL filter bandwidth in Hz.
Tracking.dll_bw_hz=2.0;
;FLL filter bandwidth in Hz.
Tracking.fll_bw_hz=50;
;filter order: choice between 2 or 3 at this moment, only for FLL assisted PLL
Tracking.order=2;
;Correlator space in chips units
Tracking.early_late_space_chips=0.5;
Other files have also been modified with minor changes to adapt to new modules or minor bug fixes.
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@80 64b25241-fba3-4117-9849-534c7e92360d