1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-26 00:46:59 +00:00

Merge branch 'carrier_phase_bug_fix' of

git+ssh://github.com/gnss-sdr/gnss-sdr into odrisci-contrib

# Conflicts:
#	conf/gnss-sdr_Hybrid_byte_sim.conf
#	src/algorithms/observables/gnuradio_blocks/gps_l1_ca_observables_cc.cc
#	src/algorithms/telemetry_decoder/gnuradio_blocks/gps_l1_ca_telemetry_decoder_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/galileo_e1_dll_pll_veml_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/galileo_e5a_dll_pll_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/galileo_volk_e1_dll_pll_veml_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_optim_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_gpu_cc.cc
#	src/algorithms/tracking/gnuradio_blocks/gps_l2_m_dll_pll_tracking_cc.cc
#	src/algorithms/tracking/libs/cpu_multicorrelator.cc
#	src/algorithms/tracking/libs/cpu_multicorrelator.h
#	src/algorithms/tracking/libs/cuda_multicorrelator.h
#	src/algorithms/tracking/libs/tracking_discriminators.cc
#	src/core/receiver/gnss_block_factory.cc
#	src/core/system_parameters/GPS_L1_CA.h
This commit is contained in:
Carles Fernandez 2015-11-30 13:59:31 +01:00
commit 23ce240483
19 changed files with 159 additions and 69 deletions

View File

@ -16,7 +16,7 @@ ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Nsr_File_Signal_Source
SignalSource.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
SignalSource.filename=/Users/javier/signals/ifen/E1L1_FE0_Band0.stream
SignalSource.item_type=byte
SignalSource.sampling_frequency=20480000
SignalSource.freq=1575420000
@ -110,15 +110,15 @@ TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Galileo_E1B_Observables
Observables.dump=false
Observables.dump=true
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=GALILEO_E1_PVT
PVT.averaging_depth=10
PVT.averaging_depth=1
PVT.flag_averaging=false
PVT.output_rate_ms=10
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump=true
PVT.dump_filename=./PVT

View File

@ -233,7 +233,7 @@ Acquisition_1B.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Artemisa_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1C.item_type=gr_complex
@ -247,7 +247,7 @@ Tracking_1C.dump=true
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=20.0;
Tracking_1C.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=1.5;

View File

@ -2992,7 +2992,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Galileo_Ephemeris& ep
lineObs += Rinex_Printer::rightJustify(Rinex_Printer::asString<int>(ssi), 1);
// Galileo E1B PHASE
lineObs += Rinex_Printer::rightJustify(asString(pseudoranges_iter->second.Carrier_phase_rads / (2 * GALILEO_PI), 3), 14);
lineObs += Rinex_Printer::rightJustify(asString(pseudoranges_iter->second.Carrier_phase_rads / (GALILEO_TWO_PI), 3), 14);
if (lli == 0)
{
lineObs += std::string(1, ' ');

View File

@ -41,6 +41,7 @@
#include <glog/logging.h>
#include "control_message_factory.h"
#include "gnss_synchro.h"
#include "Galileo_E1.h"
using google::LogMessage;
@ -65,6 +66,13 @@ galileo_e1_observables_cc::galileo_e1_observables_cc(unsigned int nchannels, boo
d_dump_filename = dump_filename;
d_flag_averaging = flag_averaging;
for (int i=0;i<d_nchannels;i++)
{
d_acc_carrier_phase_queue_rads.push_back(std::deque<double>(d_nchannels));
d_carrier_doppler_queue_hz.push_back(std::deque<double>(d_nchannels));
d_symbol_TOW_queue_s.push_back(std::deque<double>(d_nchannels));
}
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
@ -129,11 +137,39 @@ int galileo_e1_observables_cc::general_work (int noutput_items, gr_vector_int &n
*/
current_gnss_synchro[i].Flag_valid_pseudorange = false;
current_gnss_synchro[i].Pseudorange_m = 0.0;
if (current_gnss_synchro[i].Flag_valid_word)
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(current_gnss_synchro[i].Channel_ID, current_gnss_synchro[i]));
}
if (current_gnss_synchro[i].Flag_valid_word) //if this channel have valid word
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(current_gnss_synchro[i].Channel_ID, current_gnss_synchro[i]));
//################### SAVE DOPPLER AND ACC CARRIER PHASE HISTORIC DATA FOR INTERPOLATION IN OBSERVABLE MODULE #######
d_carrier_doppler_queue_hz[i].push_back(current_gnss_synchro[i].Carrier_Doppler_hz);
d_acc_carrier_phase_queue_rads[i].push_back(current_gnss_synchro[i].Carrier_phase_rads);
// save TOW history
d_symbol_TOW_queue_s[i].push_back(current_gnss_synchro[i].d_TOW_at_current_symbol);
if (d_carrier_doppler_queue_hz[i].size()>GALILEO_E1_HISTORY_DEEP)
{
d_carrier_doppler_queue_hz[i].pop_front();
}
if (d_acc_carrier_phase_queue_rads[i].size()>GALILEO_E1_HISTORY_DEEP)
{
d_acc_carrier_phase_queue_rads[i].pop_front();
}
if (d_symbol_TOW_queue_s[i].size()>GALILEO_E1_HISTORY_DEEP)
{
d_symbol_TOW_queue_s[i].pop_front();
}
}else{
// Clear the observables history for this channel
if (d_symbol_TOW_queue_s[i].size()>0)
{
d_symbol_TOW_queue_s[i].clear();
d_carrier_doppler_queue_hz[i].clear();
d_acc_carrier_phase_queue_rads[i].clear();
}
}
}
/*
@ -155,18 +191,47 @@ int galileo_e1_observables_cc::general_work (int noutput_items, gr_vector_int &n
double traveltime_ms;
double pseudorange_m;
double delta_rx_time_ms;
arma::vec symbol_TOW_vec_s;
arma::vec dopper_vec_hz;
arma::vec dopper_vec_interp_hz;
arma::vec acc_phase_vec_rads;
arma::vec acc_phase_vec_interp_rads;
arma::vec desired_symbol_TOW(1);
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
{
// compute the required symbol history shift in order to match the reference symbol
delta_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms-d_ref_PRN_rx_time_ms;
//compute the pseudorange
traveltime_ms = (d_TOW_reference - gnss_synchro_iter->second.d_TOW_at_current_symbol)*1000.0 + delta_rx_time_ms + GALILEO_STARTOFFSET_ms;
pseudorange_m = traveltime_ms * GALILEO_C_m_ms; // [m]
// update the pseudorange object
//current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].d_TOW_at_current_symbol = round(d_TOW_reference*1000)/1000 + GALILEO_STARTOFFSET_ms/1000.0;
// compute the required symbol history shift in order to match the reference symbol
delta_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms - d_ref_PRN_rx_time_ms;
//compute the pseudorange
traveltime_ms = (d_TOW_reference-gnss_synchro_iter->second.d_TOW_at_current_symbol)*1000.0 + delta_rx_time_ms + GALILEO_STARTOFFSET_ms;
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].d_TOW_at_current_symbol = round(d_TOW_reference*1000.0)/1000.0 + GALILEO_STARTOFFSET_ms/1000.0;
if (d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].size()>=GPS_L1_CA_HISTORY_DEEP)
{
// compute interpolated observation values for Doppler and Accumulate carrier phase
symbol_TOW_vec_s=arma::vec(std::vector<double>(d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
acc_phase_vec_rads=arma::vec(std::vector<double>(d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].begin(), d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].end()));
dopper_vec_hz=arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
desired_symbol_TOW[0]=symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1]+delta_rx_time_ms/1000.0;
// Curve fitting to cuadratic function
arma::mat A=arma::ones<arma::mat> (GPS_L1_CA_HISTORY_DEEP,2);
A.col(1)=symbol_TOW_vec_s;
//A.col(2)=symbol_TOW_vec_s % symbol_TOW_vec_s;
arma::mat coef_acc_phase(1,3);
coef_acc_phase=arma::pinv(A.t()*A)*A.t()*acc_phase_vec_rads;
arma::mat coef_doppler(1,3);
coef_doppler=arma::pinv(A.t()*A)*A.t()*dopper_vec_hz;
arma::vec acc_phase_lin;
arma::vec carrier_doppler_lin;
acc_phase_lin=coef_acc_phase[0]+coef_acc_phase[1]*desired_symbol_TOW[0];//+coef_acc_phase[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
carrier_doppler_lin=coef_doppler[0]+coef_doppler[1]*desired_symbol_TOW[0];//+coef_doppler[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_phase_rads =acc_phase_lin[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_Doppler_hz =carrier_doppler_lin[0];
}
}
}

View File

@ -41,6 +41,7 @@
#include <boost/thread/thread.hpp>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include <armadillo>
#include "concurrent_queue.h"
#include "galileo_navigation_message.h"
#include "rinex_printer.h"
@ -70,6 +71,11 @@ private:
galileo_e1_make_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging);
galileo_e1_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging);
//Tracking observable history
std::vector<std::deque<double>> d_acc_carrier_phase_queue_rads;
std::vector<std::deque<double>> d_carrier_doppler_queue_hz;
std::vector<std::deque<double>> d_symbol_TOW_queue_s;
// class private vars
boost::shared_ptr<gr::msg_queue> d_queue;
bool d_dump;

View File

@ -198,16 +198,15 @@ int gps_l1_ca_observables_cc::general_work (int noutput_items, gr_vector_int &ni
// compute the required symbol history shift in order to match the reference symbol
delta_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms - d_ref_PRN_rx_time_ms;
//compute the pseudorange
traveltime_ms = (d_TOW_reference-gnss_synchro_iter->second.d_TOW_at_current_symbol)*1000.0 + delta_rx_time_ms + GPS_STARTOFFSET_ms;
traveltime_ms = (d_TOW_reference-gnss_synchro_iter->second.d_TOW_at_current_symbol) * 1000.0 + delta_rx_time_ms + GPS_STARTOFFSET_ms;
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].debug_var1 = delta_rx_time_ms;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].d_TOW_at_current_symbol = round(d_TOW_reference*1000.0)/1000.0 + GPS_STARTOFFSET_ms/1000.0;
if (d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].size() >= GPS_L1_CA_HISTORY_DEEP)
if (d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].size()>=GPS_L1_CA_HISTORY_DEEP)
{
// compute interpolated observation values for Doppler and Accumulate carrier phase
symbol_TOW_vec_s = arma::vec(std::vector<double>(d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
@ -219,14 +218,14 @@ int gps_l1_ca_observables_cc::general_work (int noutput_items, gr_vector_int &ni
//std::cout<<"acc_phase_vec_rads="<<acc_phase_vec_rads<<std::endl;
//std::cout<<"dopper_vec_hz="<<dopper_vec_hz<<std::endl;
desired_symbol_TOW[0] = symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1] + delta_rx_time_ms / 1000.0;
desired_symbol_TOW[0] = symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP - 1] + delta_rx_time_ms / 1000.0;
//std::cout<<"desired_symbol_TOW="<<desired_symbol_TOW[0]<<std::endl;
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
// Curve fitting to cuadratic function
arma::mat A = arma::ones<arma::mat>(GPS_L1_CA_HISTORY_DEEP,2);
arma::mat A = arma::ones<arma::mat> (GPS_L1_CA_HISTORY_DEEP, 2);
A.col(1) = symbol_TOW_vec_s;
//A.col(2)=symbol_TOW_vec_s % symbol_TOW_vec_s;
arma::mat coef_acc_phase(1,3);

View File

@ -42,6 +42,7 @@
#include <boost/shared_ptr.hpp>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include <armadillo>
#include "concurrent_queue.h"
#include "gps_navigation_message.h"
#include "rinex_printer.h"

View File

@ -348,6 +348,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
//correct the accumulated phase for the costas loop phase shift, if required
current_synchro_data.Carrier_phase_rads += GPS_PI;
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file

View File

@ -252,14 +252,14 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
tcode_half_chips = - rem_code_phase_half_chips;
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
early_late_spc_samples = std::round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = std::round(d_very_early_late_spc_chips / code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + very_early_late_spc_samples * 2;
for (int i = 0; i < epl_loop_length_samples; i++)
{
associated_chip_index = 2 + round(fmod(tcode_half_chips - 2 * d_very_early_late_spc_chips, code_length_half_chips));
associated_chip_index = 2 + std::round(std::fmod(tcode_half_chips - 2 * d_very_early_late_spc_chips, code_length_half_chips));
d_very_early_code[i] = d_ca_code[associated_chip_index];
tcode_half_chips = tcode_half_chips + code_phase_step_half_chips;
}
@ -310,11 +310,10 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
if (d_enable_tracking == true)
{
@ -327,8 +326,8 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
acq_trk_shif_correction_samples = d_current_prn_length_samples - std::fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = std::round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignment with local replica
@ -365,18 +364,18 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GALILEO_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
//carrier phase accumulator for (K) Doppler estimation-
d_acc_carrier_phase_rad -= GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast(d_current_prn_length_samples)/static_cast<double>(d_fs_in);
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * d_current_prn_length_samples/static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## DLL ##########################################################
// DLL discriminator
@ -400,7 +399,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_current_prn_length_samples = std::round(K_blk_samples); //round to a discrete samples
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
@ -473,9 +472,9 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
if (std::floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
d_last_seg = std::floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
@ -498,9 +497,9 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
if (std::floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
d_last_seg = std::floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{

View File

@ -404,6 +404,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer

View File

@ -218,7 +218,8 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking()
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz/static_cast<double>(d_fs_in);
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //The carrier loop filter implements the Doppler accumulator
@ -239,7 +240,6 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking()
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;

View File

@ -297,7 +297,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_code()
void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
{
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * ( d_if_freq + d_carrier_doppler_hz ) / static_cast<float>(d_fs_in);
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * static_cast<float>( d_if_freq + d_carrier_doppler_hz ) / static_cast<float>(d_fs_in);
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);

View File

@ -122,16 +122,16 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
//pinned memory mode - use special function to get OS-pinned memory
int N_CORRELATORS = 3;
// Get space for a vector with the C/A code replica sampled 1x/chip
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// Get space for the resampled early / prompt / late local replicas
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// correlator outputs (scalar)
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// correlator outputs (scalar)
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
//map to EPL pointers
//map to EPL pointers
d_Early = &d_corr_outs_gpu[0];
d_Prompt = &d_corr_outs_gpu[1];
d_Prompt = &d_corr_outs_gpu[1];
d_Late = &d_corr_outs_gpu[2];
//--- Perform initializations ------------------------------
@ -139,6 +139,7 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
//local code resampler on GPU
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
@ -168,6 +169,7 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
set_relative_rate(1.0/((double)d_vector_length*2));
d_channel_internal_queue = 0;
@ -234,9 +236,9 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
d_local_code_shift_chips[0]=-d_early_late_spc_chips;
d_local_code_shift_chips[1]=0.0;
d_local_code_shift_chips[2]=d_early_late_spc_chips;
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
@ -273,7 +275,6 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
cudaFreeHost(d_corr_outs_gpu);
cudaFreeHost(d_local_code_shift_chips);
cudaFreeHost(d_ca_code);
multicorrelator_gpu->free_cuda();
delete(multicorrelator_gpu);
delete[] d_Prompt_buffer;
@ -285,10 +286,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz = 0.0;
float carr_error_filt_hz = 0.0;
float code_error_chips = 0.0;
float code_error_filt_chips = 0.0;
float carr_error_hz=0.0;
float carr_error_filt_hz=0.0;
float code_error_chips=0.0;
float code_error_filt_chips=0.0;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];

View File

@ -63,6 +63,7 @@ bool cpu_multicorrelator::init(
}
bool cpu_multicorrelator::set_local_code_and_taps(
int code_length_chips,
const std::complex<float>* local_code_in,
@ -85,6 +86,7 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
}
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
{
float local_code_chip_index;
@ -93,7 +95,7 @@ void cpu_multicorrelator::update_local_code(int correlator_length_samples,float
for (int n = 0; n < correlator_length_samples; n++)
{
// resample code for current tap
local_code_chip_index = fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];

View File

@ -35,6 +35,7 @@
#ifndef GNSS_SDR_CPU_MULTICORRELATOR_H_
#define GNSS_SDR_CPU_MULTICORRELATOR_H_
#include <complex>
/*!
@ -51,6 +52,7 @@ public:
void update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad);
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
bool free();
private:
// Allocate the device input vectors
const std::complex<float> *d_sig_in;

View File

@ -131,6 +131,7 @@ public:
std::complex<float>* corr_out,
std::complex<float>* sig_in
);
bool free_cuda();
bool Carrier_wipeoff_multicorrelator_resampler_cuda(
float rem_carrier_phase_in_rad,

View File

@ -1312,6 +1312,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams, queue));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking(configuration.get(), role, in_streams,
out_streams, queue));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_DLL_PLL_Optim_Tracking") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaDllPllOptimTracking(configuration.get(), role, in_streams,
@ -1577,7 +1583,7 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
out_streams, queue));
block = std::move(block_);
}
if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking") == 0)
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking(configuration.get(), role, in_streams,
out_streams, queue));

View File

@ -71,6 +71,7 @@ const double GPS_STARTOFFSET_ms = 68.802; //[ms] Initial sign. travel time (this
// OBSERVABLE HISTORY DEEP FOR INTERPOLATION
const int GPS_L1_CA_HISTORY_DEEP = 100;
// NAVIGATION MESSAGE DEMODULATION AND DECODING
#define GPS_PREAMBLE {1, 0, 0, 0, 1, 0, 1, 1}

View File

@ -42,6 +42,7 @@
// Physical constants
const double GALILEO_PI = 3.1415926535898; //!< Pi as defined in GALILEO ICD
const double GALILEO_TWO_PI = 6.283185307179600 ; //!< 2*Pi as defined in GALILEO ICD
const double GALILEO_GM = 3.986004418e14; //!< Geocentric gravitational constant[m^3/s^2]
const double GALILEO_OMEGA_EARTH_DOT = 7.2921151467e-5; //!< Mean angular velocity of the Earth [rad/s]
const double GALILEO_C_m_s = 299792458.0; //!< The speed of light, [m/s]
@ -61,6 +62,10 @@ const int Galileo_E1_NUMBER_OF_CODES = 50;
const double GALILEO_STARTOFFSET_ms = 68.802; //[ms] Initial sign. travel time (this cannot go here)
// OBSERVABLE HISTORY DEEP FOR INTERPOLATION
const int GALILEO_E1_HISTORY_DEEP=100;
// Galileo INAV Telemetry structure
#define GALILEO_INAV_PREAMBLE {0, 1, 0, 1, 1, 0, 0, 0, 0, 0}