- Galileo channels now supports all the published PRN IDs in acquisition and tracking

- Changes in Galileo telemetry decoding (still under construction)
- Bug correction in tracking blocks that could cause random segmentation faults on some configurations

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@431 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Javier Arribas 2013-10-25 16:07:24 +00:00
parent 0f79be7e77
commit 4d66f6c6ab
13 changed files with 492 additions and 148 deletions

View File

@ -17,7 +17,7 @@ ControlThread.wait_for_flowgraph=false
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/DATALOGGER_/signals/CTTC captures/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
SignalSource.filename=/media/DATALOGGER/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=short
@ -164,7 +164,7 @@ Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels.count=1
Channels.count=4
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
@ -247,14 +247,14 @@ Channel0.satellite=20
;Channel1.signal=1B
Channel1.satellite=12
;######### CHANNEL 0 CONFIG ############
;######### CHANNEL 2 CONFIG ############
;Channel2.system=Galileo
;Channel2.signal=1B
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
Channel2.satellite=11
;######### CHANNEL 1 CONFIG ############
;######### CHANNEL 3 CONFIG ############
;Channel3.system=Galileo
;Channel3.signal=1B
@ -286,11 +286,7 @@ Acquisition.doppler_step=125
;######### ACQUISITION CHANNELS CONFIG ######
;######### ACQUISITION CH 0 CONFIG ############
;Acquisition0.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;Acquisition0.threshold=0.008
;Acquisition0.pfa=0.0001
;Acquisition0.doppler_max=10000
;Acquisition0.doppler_step=125
;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false
;Acquisition0.repeat_satellite = false
;#cboc: Only for [Galileo_E1_PCPS_Ambiguous_Acquisition]. This option allows you to choose between acquiring with CBOC signal [true] or sinboc(1,1) signal [false].
@ -299,12 +295,6 @@ Acquisition0.cboc=false
;######### ACQUISITION CH 1 CONFIG ############
;Acquisition1.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;Acquisition1.threshold=0.008
;Acquisition1.pfa=0.0001
;Acquisition1.doppler_max=10000
;Acquisition1.doppler_step=125
;Acquisition1.repeat_satellite = false
Acquisition1.cboc=false
;######### TRACKING GLOBAL CONFIG ############
@ -348,10 +338,10 @@ TelemetryDecoder.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables
Observables.implementation=Galileo_E1B_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
Observables.dump=true
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -359,7 +349,7 @@ Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
PVT.implementation=GALILEO_E1_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=100

View File

@ -0,0 +1,375 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2560000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/DATALOGGER/ION GNSS 2013/E1L1_FE0_Band0.stream
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=20480000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=float
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=8000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=2048000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels.count=8
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=Galileo
;#signal:
;# "1C" GPS L1 C/A
;# "1P" GPS L1 P
;# "1W" GPS L1 Z-tracking and similar (AS on)
;# "1Y" GPS L1 Y
;# "1M" GPS L1 M
;# "1N" GPS L1 codeless
;# "2C" GPS L2 C/A
;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless
;# "2S" GPS L2 L2C (M)
;# "2L" GPS L2 L2C (L)
;# "2X" GPS L2 L2C (M+L)
;# "2P" GPS L2 P
;# "2W" GPS L2 Z-tracking and similar (AS on)
;# "2Y" GPS L2 Y
;# "2M" GPS GPS L2 M
;# "2N" GPS L2 codeless
;# "5I" GPS L5 I
;# "5Q" GPS L5 Q
;# "5X" GPS L5 I+Q
;# "1C" GLONASS G1 C/A
;# "1P" GLONASS G1 P
;# "2C" GLONASS G2 C/A (Glonass M)
;# "2P" GLONASS G2 P
;# "1A" GALILEO E1 A (PRS)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1C" GALILEO E1 C (no data)
;# "1X" GALILEO E1 B+C
;# "1Z" GALILEO E1 A+B+C
;# "5I" GALILEO E5a I (F/NAV OS)
;# "5Q" GALILEO E5a Q (no data)
;# "5X" GALILEO E5a I+Q
;# "7I" GALILEO E5b I
;# "7Q" GALILEO E5b Q
;# "7X" GALILEO E5b I+Q
;# "8I" GALILEO E5 I
;# "8Q" GALILEO E5 Q
;# "8X" GALILEO E5 I+Q
;# "6A" GALILEO E6 A
;# "6B" GALILEO E6 B
;# "6C" GALILEO E6 C
;# "6X" GALILEO E6 B+C
;# "6Z" GALILEO E6 A+B+C
;# "1C" SBAS L1 C/A
;# "5I" SBAS L5 I
;# "5Q" SBAS L5 Q
;# "5X" SBAS L5 I+Q
;# "2I" COMPASS E2 I
;# "2Q" COMPASS E2 Q
;# "2X" COMPASS E2 IQ
;# "7I" COMPASS E5b I
;# "7Q" COMPASS E5b Q
;# "7X" COMPASS E5b IQ
;# "6I" COMPASS E6 I
;# "6Q" COMPASS E6 Q
;# "6X" COMPASS E6 IQ
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1B
;Galileo FM3 -> PRN 19
;Galileo FM4 -> PRN 20
;######### CHANNEL 0 CONFIG ############
;Channel0.system=Galileo
;Channel0.signal=1B
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel0.satellite=20
;######### CHANNEL 1 CONFIG ############
;Channel1.system=Galileo
;Channel1.signal=1B
;Channel1.satellite=12
;######### CHANNEL 2 CONFIG ############
;Channel2.system=Galileo
;Channel2.signal=1B
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel2.satellite=11
;######### CHANNEL 3 CONFIG ############
;Channel3.system=Galileo
;Channel3.signal=1B
;Channel3.satellite=19
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition.dump=false
;#filename: Log path and filename
Acquisition.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.pfa=0.00005
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition.doppler_step=125
;######### ACQUISITION CHANNELS CONFIG ######
;######### ACQUISITION CH 0 CONFIG ############
;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false
;Acquisition0.repeat_satellite = false
;#cboc: Only for [Galileo_E1_PCPS_Ambiguous_Acquisition]. This option allows you to choose between acquiring with CBOC signal [true] or sinboc(1,1) signal [false].
;#Use only if GNSS-SDR.internal_fs_hz is greater than or equal to 6138000
Acquisition0.cboc=false
;######### ACQUISITION CH 1 CONFIG ############
Acquisition1.cboc=false
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A or [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Galileo_E1B_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=true
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GALILEO_E1_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=100
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -90,20 +90,12 @@ galileo_e1_observables_cc::~galileo_e1_observables_cc()
{
d_dump_file.close();
}
//
//bool galileo_e1_observables_cc::pairCompare_gnss_synchro_Prn_delay_ms( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
//{
// return (a.second.Prn_timestamp_ms) < (b.second.Prn_timestamp_ms);
//}
bool Galileo_pairCompare_gnss_synchro_Prn_delay_ms( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
{
return (a.second.Prn_timestamp_ms) < (b.second.Prn_timestamp_ms);
}
//bool galileo_e1_observables_cc::pairCompare_gnss_synchro_d_TOW_at_current_symbol( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
//{
// return (a.second.d_TOW_at_current_symbol) < (b.second.d_TOW_at_current_symbol);
//}
bool Galileo_pairCompare_gnss_synchro_d_TOW_at_current_symbol( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
{
@ -121,7 +113,6 @@ int galileo_e1_observables_cc::general_work (int noutput_items, gr_vector_int &n
Gnss_Synchro current_gnss_synchro[d_nchannels];
std::map<int,Gnss_Synchro> current_gnss_synchro_map;
std::map<int,Gnss_Synchro>::iterator gnss_synchro_iter;
// std::cout<<"entrato nella funzione general work linea 121***********************************"<<std::endl;
d_sample_counter++; //count for the processed samples
/*
* 1. Read the GNSS SYNCHRO objects from available channels
@ -152,15 +143,10 @@ int galileo_e1_observables_cc::general_work (int noutput_items, gr_vector_int &n
*/
//;
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
//IL CANALE CON IL TIME COUNTER TOW PIÙ BASSO VIENE PRESO COME RIFERIMENTO
gnss_synchro_iter = max_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), Galileo_pairCompare_gnss_synchro_d_TOW_at_current_symbol);
double d_TOW_reference = gnss_synchro_iter->second.d_TOW_at_current_symbol;
//std::cout<< "accedo agli elementi di syncro d_TOW_reference =" << gnss_synchro_iter->second.d_TOW_at_current_symbol<<std::endl;
double d_ref_PRN_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms;
//std::cout<< "accedo agli elementi di syncro d_ref_PRN_rx_time_ms=" << gnss_synchro_iter->second.Prn_timestamp_ms<<std::endl;
int reference_channel= gnss_synchro_iter->second.Channel_ID;
//std::cout<< "reference_channel=" << reference_channel<<std::endl;
//int reference_channel= gnss_synchro_iter->second.Channel_ID;
// Now compute RX time differences due to the PRN alignement in the correlators
double traveltime_ms;
@ -168,52 +154,50 @@ int galileo_e1_observables_cc::general_work (int noutput_items, gr_vector_int &n
double delta_rx_time_ms;
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
{
// //std::cout<<"entrato nell'iterator di common reception time 147***********************************"<<std::endl;
// // compute the required symbol history shift in order to match the reference symbol
// compute the required symbol history shift in order to match the reference symbol
delta_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms-d_ref_PRN_rx_time_ms;
//std::cout<<"gnss_synchro_iter->second.Prn_timestamp_ms="<<gnss_synchro_iter->second.Prn_timestamp_ms << std::endl;
//std::cout<<"d_ref_PRN_rx_time_ms="<<d_ref_PRN_rx_time_ms << std::endl;
// //compute the pseudorange
//std::cout<<"delta_rx_time_ms["<<gnss_synchro_iter->second.Channel_ID<<"]="<<delta_rx_time_ms<<std::endl;
//compute the pseudorange
traveltime_ms = (d_TOW_reference-gnss_synchro_iter->second.d_TOW_at_current_symbol)*1000.0 + delta_rx_time_ms + GALILEO_STARTOFFSET_ms;
//std::cout<<"traveltime_ms="<<traveltime_ms<<std::endl;
pseudorange_m = traveltime_ms * GALILEO_C_m_ms; // [m]
//std::cout<<"pseudorange_m="<<pseudorange_m<<std::endl;
//std::cout<<"pseudorange_m["<<gnss_synchro_iter->second.Channel_ID<<"]="<<pseudorange_m<<std::endl;
// update the pseudorange object
//current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].d_TOW_at_current_symbol = round(d_TOW_reference*1000)/1000 + GALILEO_STARTOFFSET_ms/1000.0;
//std::cout<<"current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m=" << current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m <<std::endl;
}
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i=0; i<d_nchannels ; i++)
{
tmp_double = current_gnss_synchro[i].d_TOW_at_current_symbol;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Prn_timestamp_ms;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = 0;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
std::cout << "Exception writing observables dump file " << e.what() << std::endl;
}
}
//
// if(d_dump == true)
// {
// // MULTIPLEXED FILE RECORDING - Record results to file
// try
// {
// double tmp_double;
// for (unsigned int i=0; i<d_nchannels ; i++)
// {
// tmp_double = current_gnss_synchro[i].d_TOW_at_current_symbol;
// d_dump_file.write((char*)&tmp_double, sizeof(double));
// tmp_double = current_gnss_synchro[i].Prn_timestamp_ms;
// d_dump_file.write((char*)&tmp_double, sizeof(double));
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
// d_dump_file.write((char*)&tmp_double, sizeof(double));
// tmp_double = 0;
// d_dump_file.write((char*)&tmp_double, sizeof(double));
// tmp_double = current_gnss_synchro[i].PRN;
// d_dump_file.write((char*)&tmp_double, sizeof(double));
// }
// }
// catch (std::ifstream::failure e)
// {
// std::cout << "Exception writing observables dump file " << e.what() << std::endl;
// }
// }
//
consume_each(1); //one by one
for (unsigned int i=0; i<d_nchannels ; i++)
{

View File

@ -69,9 +69,6 @@ private:
galileo_e1_make_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging);
galileo_e1_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging);
bool pairCompare_gnss_synchro_Prn_delay_ms( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b);
bool pairCompare_gnss_synchro_d_TOW_at_current_symbol( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b);
// class private vars
boost::shared_ptr<gr::msg_queue> d_queue;
bool d_dump;

View File

@ -364,11 +364,11 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
//2. Add the telemetry decoder information
if (this->d_flag_preamble==true and d_nav.flag_TOW_set==true) //update TOW at the preamble instant (todo: check for valid d_TOW) //flag preamble is true after the all page (even or odd) is recevived
{
std::cout<<"time stamp, identified preamble and TOW set" << std::endl;
//std::cout<<"time stamp, identified preamble and TOW set" << std::endl;
Prn_timestamp_at_preamble_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
if((d_nav.flag_TOW_5 == 1) and (d_nav.Page_type_time_stamp == 5)) //page 5 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
std::cout<< "Using TOW_5 for timestamping" << std::endl;
//std::cout<< "Using TOW_5 for timestamping" << std::endl;
d_TOW_at_Preamble = d_nav.TOW_5+GALILEO_PAGE_SECONDS; //TOW_5 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later
std::cout << "d_TOW_at_Preamble="<< d_TOW_at_Preamble<< std::endl;
/* 1 sec (GALILEO_INAV_PAGE_PART_SYMBOLS*GALIELO_E1_CODE_PERIOD) is added because if we have a TOW value it means that we are at the and of the odd page*/
@ -380,11 +380,11 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
else if((d_nav.flag_TOW_6 == 1) and (d_nav.Page_type_time_stamp == 6)) //page 6 arrived and decoded, so we are in the odd page (since Tow refers to the even page, we have to add 1 sec)
{
std::cout<< "Using TOW_6 for timestamping" << std::endl;
//std::cout<< "Using TOW_6 for timestamping" << std::endl;
d_TOW_at_Preamble = d_nav.TOW_6+GALILEO_PAGE_SECONDS; //TOW_5 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later
std::cout << "d_TOW_at_Preamble="<< d_TOW_at_Preamble<< std::endl;
//std::cout << "d_TOW_at_Preamble="<< d_TOW_at_Preamble<< std::endl;
d_TOW_at_current_symbol = d_TOW_at_Preamble + GALILEO_INAV_PAGE_PART_SYMBOLS*GALIELO_E1_CODE_PERIOD;
std::cout << "d_TOW_at_current_symbol="<< d_TOW_at_current_symbol << std::endl;
//std::cout << "d_TOW_at_current_symbol="<< d_TOW_at_current_symbol << std::endl;
d_nav.flag_TOW_6 = 0;
}
@ -393,12 +393,12 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
else
{
d_TOW_at_Preamble = d_TOW_at_Preamble + GALILEO_PAGE_SECONDS; //this is the even preamble after the last odd preamble
std::cout << "d_TOW_at_Preamble="<< d_TOW_at_Preamble << std::endl;
//std::cout << "d_TOW_at_Preamble="<< d_TOW_at_Preamble << std::endl;
d_TOW_at_current_symbol = d_TOW_at_Preamble + GALILEO_INAV_PAGE_PART_SYMBOLS*GALIELO_E1_CODE_PERIOD;
std::cout << "d_TOW_at_current_symbol="<< d_TOW_at_current_symbol << std::endl;
//std::cout << "d_TOW_at_current_symbol="<< d_TOW_at_current_symbol << std::endl;
}
std::cout << "Prn_timestamp_at_preamble_ms ="<< Prn_timestamp_at_preamble_ms << std::endl;
//std::cout << "Prn_timestamp_at_preamble_ms ="<< Prn_timestamp_at_preamble_ms << std::endl;
}
@ -408,14 +408,16 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
//std::cout << "d_TOW_at_current_symbol="<< d_TOW_at_current_symbol << std::endl;
}
if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.flag_CRC_test == true)
//if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.flag_CRC_test == true)
if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true)
{
current_synchro_data.Flag_valid_word = true;
}else{
current_synchro_data.Flag_valid_word = false;
}
current_synchro_data.d_TOW = d_TOW_at_Preamble;
current_synchro_data.d_TOW_at_current_symbol = d_TOW_at_current_symbol;
//current_synchro_data.Flag_valid_word = true;
//current_synchro_data.Flag_valid_word = (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.flag_CRC_test == true);
current_synchro_data.Flag_preamble = d_flag_preamble;
current_synchro_data.Prn_timestamp_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
@ -434,7 +436,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
tmp_double = d_TOW_at_Preamble;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
catch (const std::ifstream::failure& e)
{
std::cout << "Exception writing observables dump file " << e.what() << std::endl;
}

View File

@ -441,7 +441,6 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
@ -455,7 +454,6 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
}
}
else
@ -475,8 +473,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
*out[0] = *d_acquisition_gnss_synchro;
}
if(d_dump)

View File

@ -487,8 +487,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_ve
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
*out[0] = *d_acquisition_gnss_synchro;
//! When tracking is disabled an array of 1's is sent to maintain the TCP connection
boost::array<float, NUM_TX_VARIABLES_GALILEO_E1> tx_variables_array = {{1,1,1,1,1,1,1,1,1,1,1,1,0}};

View File

@ -531,8 +531,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
*out[0] = *d_acquisition_gnss_synchro;
}
if(d_dump)

View File

@ -537,8 +537,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
*out[0] = *d_acquisition_gnss_synchro;
}
if(d_dump)

View File

@ -571,8 +571,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
*out[0] = *d_acquisition_gnss_synchro;
//! When tracking is disabled an array of 1's is sent to maintain the TCP connection
boost::array<float, NUM_TX_VARIABLES_GPS_L1_CA> tx_variables_array = {{1,1,1,1,1,1,1,1,0}};

View File

@ -535,45 +535,60 @@ void GNSSFlowgraph::set_signals_list()
* See http://igscb.jpl.nasa.gov/igscb/data/format/rinex301.pdf (page 5)
*/
/*
* Read GNSS-SDR default GNSS system and signal
*/
std::string default_system = configuration_->property("Channel.system",std::string("GPS"));
std::string default_signal = configuration_->property("Channel.signal",std::string("1C"));
/*
* Loop to create the list of GNSS Signals
* To add signals from other systems, add another loop 'for'
*/
/*
* Loop to create GPS L1 C/A signals
*/
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32 };
if (default_system.compare(std::string("GPS"))==0)
{
/*
* Loop to create GPS L1 C/A signals
*/
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32 };
for (available_gnss_prn_iter = available_gps_prn.begin(); available_gnss_prn_iter
!= available_gps_prn.end(); available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
*available_gnss_prn_iter), std::string("1C")));
}
for (available_gnss_prn_iter = available_gps_prn.begin(); available_gnss_prn_iter
!= available_gps_prn.end(); available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
*available_gnss_prn_iter), std::string("1C")));
}
}
/*
* Loop to create SBAS L1 C/A signals
*/
std::set<unsigned int> available_sbas_prn = { 120, 124, 126};
if (default_system.compare(std::string("SBAS"))==0)
{
/*
* Loop to create SBAS L1 C/A signals
*/
std::set<unsigned int> available_sbas_prn = { 120, 124, 126};
for (available_gnss_prn_iter = available_sbas_prn.begin(); available_gnss_prn_iter
!= available_sbas_prn.end(); available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("SBAS"),
*available_gnss_prn_iter), std::string("1C")));
}
for (available_gnss_prn_iter = available_sbas_prn.begin(); available_gnss_prn_iter
!= available_sbas_prn.end(); available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("SBAS"),
*available_gnss_prn_iter), std::string("1C")));
}
}
if (default_system.compare(std::string("Galileo"))==0)
{
/*
* Loop to create the list of Galileo E1 B signals
*/
std::set<unsigned int> available_galileo_prn = { 11, 12, 19, 20 };
std::set<unsigned int> available_galileo_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36};
for (available_gnss_prn_iter = available_galileo_prn.begin(); available_gnss_prn_iter
!= available_galileo_prn.end(); available_gnss_prn_iter++)
@ -581,7 +596,7 @@ void GNSSFlowgraph::set_signals_list()
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
*available_gnss_prn_iter), std::string("1B")));
}
}
/*
* Ordering the list of signals from configuration file
@ -589,9 +604,6 @@ void GNSSFlowgraph::set_signals_list()
std::list<Gnss_Signal>::iterator gnss_it = available_GNSS_signals_.begin();
std::string default_system = (configuration_->property("Channel.system",std::string("GPS")));
std::string default_signal = configuration_->property("Channel.signal",std::string("1C"));
for (unsigned int i = 0; i < channels_count_; i++)
{
std::string gnss_system = (configuration_->property("Channel"
@ -622,6 +634,8 @@ void GNSSFlowgraph::set_signals_list()
}
// **** FOR DEBUGGING THE LIST OF GNSS SIGNALS ****
//
//std::cout<<"default_system="<<default_system<<std::endl;
//std::cout<<"default_signal="<<default_signal<<std::endl;
// std::list<Gnss_Signal>::iterator available_gnss_list_iter;
// for (available_gnss_list_iter = available_GNSS_signals_.begin(); available_gnss_list_iter
// != available_GNSS_signals_.end(); available_gnss_list_iter++)

View File

@ -438,7 +438,7 @@ void Galileo_Navigation_Message::split_page(const char *page, int flag_even_word
{
flag_CRC_test = true;
// CRC correct: Decode word
//std::cout<<"CRC correct!"<<std::endl;
std::cout<<"CRC correct!"<<std::endl;
std::string page_number_bits = Data_k.substr (0,6);
//std::cout << "Page number bits from Data k" << std::endl << page_number_bits << std::endl;
@ -472,6 +472,7 @@ void Galileo_Navigation_Message::split_page(const char *page, int flag_even_word
}else{
// CRC wrong.. discard frame
std::cout<<"CRC error!"<<std::endl;
flag_CRC_test= false;
}
//********** end of CRC checksum control ***/
}

View File

@ -145,7 +145,7 @@ void Gnss_Satellite::set_PRN(unsigned int PRN_)
}
if (system.compare("GPS") == 0)
{
if (PRN_ < 1 or PRN > 32)
if (PRN_ < 1 or PRN_ > 32)
{
DLOG(INFO) << "This PRN is not defined";
PRN = 0;
@ -157,7 +157,7 @@ void Gnss_Satellite::set_PRN(unsigned int PRN_)
}
else if (system.compare("Glonass") == 0)
{
if (PRN_ < 1 or PRN > 24)
if (PRN_ < 1 or PRN_ > 24)
{
DLOG(INFO) << "This PRN is not defined";
PRN = 0;
@ -181,29 +181,17 @@ void Gnss_Satellite::set_PRN(unsigned int PRN_)
}
}
else if (system.compare("Galileo") == 0)
{
if (PRN_ < 1 or PRN_ > 36)
{
if (PRN_ == 11)
{
PRN = 11;
}
else if (PRN_ == 12)
{
PRN = 12;
}
else if (PRN_ == 19)
{
PRN = 19;
}
else if (PRN_ == 20)
{
PRN = 20;
}
else
{
DLOG(INFO) << "This PRN is not defined";
PRN = 0;
}
DLOG(INFO) << "This PRN is not defined";
PRN = 0;
}
else
{
PRN = PRN_;
}
}
else
{
DLOG(INFO) << "System " << system << " is not defined";
@ -517,7 +505,7 @@ void Gnss_Satellite::set_block(std::string system_, unsigned int PRN_ )
block = std::string("IOV"); // Galileo In-Orbit Validation (IOV) satellite FM4 (Flight Model 4)
break;
default:
block = std::string("Unknown");
block = std::string("Unknown(Simulated)");
}
}
}