1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 22:43:14 +00:00

Removing unused code

This commit is contained in:
Javier Arribas 2017-05-02 15:31:31 +02:00
parent c3c3266fad
commit 9eee209f40
13 changed files with 20 additions and 907 deletions

View File

@ -1,289 +0,0 @@
/*!
* \file hybrid_observables_cc.cc
* \brief Implementation of the pseudorange computation block for Galileo E1
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_observables_cc.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <map>
#include <vector>
#include <utility>
#include <armadillo>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
using google::LogMessage;
hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
{
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
}
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_acc_carrier_phase_queue_rads.push_back(std::deque<double>(d_nchannels));
d_carrier_doppler_queue_hz.push_back(std::deque<double>(d_nchannels));
d_symbol_TOW_queue_s.push_back(std::deque<double>(d_nchannels));
}
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
}
}
hybrid_observables_cc::~hybrid_observables_cc()
{
d_dump_file.close();
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW_at_current_symbol(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
}
int hybrid_observables_cc::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer
Gnss_Synchro current_gnss_synchro[d_nchannels];
std::map<int,Gnss_Synchro> current_gnss_synchro_map;
std::map<int,Gnss_Synchro>::iterator gnss_synchro_iter;
if (d_nchannels != ninput_items.size())
{
LOG(WARNING) << "The Observables block is not well connected";
}
/*
* 1. Read the GNSS SYNCHRO objects from available channels
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
//Copy the telemetry decoder data to local copy
current_gnss_synchro[i] = in[i][0];
/*
* 1.2 Assume no valid pseudoranges
*/
current_gnss_synchro[i].Flag_valid_pseudorange = false;
current_gnss_synchro[i].Pseudorange_m = 0.0;
if (current_gnss_synchro[i].Flag_valid_word)
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(current_gnss_synchro[i].Channel_ID, current_gnss_synchro[i]));
//################### SAVE DOPPLER AND ACC CARRIER PHASE HISTORIC DATA FOR INTERPOLATION IN OBSERVABLE MODULE #######
d_carrier_doppler_queue_hz[i].push_back(current_gnss_synchro[i].Carrier_Doppler_hz);
d_acc_carrier_phase_queue_rads[i].push_back(current_gnss_synchro[i].Carrier_phase_rads);
// save TOW history
d_symbol_TOW_queue_s[i].push_back(current_gnss_synchro[i].TOW_at_current_symbol_s);
if (d_carrier_doppler_queue_hz[i].size() > history_deep)
{
d_carrier_doppler_queue_hz[i].pop_front();
}
if (d_acc_carrier_phase_queue_rads[i].size() > history_deep)
{
d_acc_carrier_phase_queue_rads[i].pop_front();
}
if (d_symbol_TOW_queue_s[i].size() > history_deep)
{
d_symbol_TOW_queue_s[i].pop_front();
}
}
else
{
// Clear the observables history for this channel
if (d_symbol_TOW_queue_s[i].size() > 0)
{
d_symbol_TOW_queue_s[i].clear();
d_carrier_doppler_queue_hz[i].clear();
d_acc_carrier_phase_queue_rads[i].clear();
}
}
}
/*
* 2. Compute RAW pseudoranges using COMMON RECEPTION TIME algorithm. Use only the valid channels (channels that are tracking a satellite)
*/
if(current_gnss_synchro_map.size() > 0)
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_iter = max_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), Hybrid_pairCompare_gnss_synchro_d_TOW_at_current_symbol);
double d_TOW_reference = gnss_synchro_iter->second.TOW_at_current_symbol_s;
double d_ref_PRN_phase_samples = gnss_synchro_iter->second.Code_phase_samples;
//std::cout<<"OBS SV REF SAT: "<<gnss_synchro_iter->second.PRN<<std::endl;
unsigned long int d_ref_PRN_sample_counter = gnss_synchro_iter->second.Tracking_sample_counter;
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
int delta_sample_counter;
double delta_sample_counter_s;
double delta_PRN_phase_s;
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
{
delta_sample_counter = (gnss_synchro_iter->second.Tracking_sample_counter - d_ref_PRN_sample_counter);
delta_sample_counter_s=(double)delta_sample_counter/(double)gnss_synchro_iter->second.fs;
delta_PRN_phase_s = (gnss_synchro_iter->second.Code_phase_samples - d_ref_PRN_phase_samples)/(double)gnss_synchro_iter->second.fs;
//compute the pseudorange (no rx time offset correction)
traveltime_ms = (d_TOW_reference - gnss_synchro_iter->second.TOW_at_current_symbol_s) * 1000.0
+ delta_sample_counter_s*1000.0 + delta_PRN_phase_s*1000.0
+ GPS_STARTOFFSET_ms;
//convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
//std::cout<<"["<<gnss_synchro_iter->second.PRN<<"] delta_rx_t: "<<delta_rx_time_ms
// <<" [ms] delta_TOW_ms: "<<(d_TOW_reference - gnss_synchro_iter->second.d_TOW_at_current_symbol) * 1000.0
// <<" Pr: "<<pseudorange_m<<" [m]"
// <<std::endl;
// update the pseudorange object
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].RX_time = d_TOW_reference + GPS_STARTOFFSET_ms / 1000.0;
if (d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].size() >= history_deep)
{
arma::vec symbol_TOW_vec_s;
arma::vec dopper_vec_hz;
arma::vec dopper_vec_interp_hz;
arma::vec acc_phase_vec_rads;
arma::vec acc_phase_vec_interp_rads;
arma::vec desired_symbol_TOW(1);
// compute interpolated observation values for Doppler and Accumulate carrier phase
symbol_TOW_vec_s = arma::vec(std::vector<double>(d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
acc_phase_vec_rads = arma::vec(std::vector<double>(d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].begin(), d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].end()));
dopper_vec_hz = arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
desired_symbol_TOW[0] = symbol_TOW_vec_s[history_deep - 1] + delta_sample_counter_s+delta_PRN_phase_s;
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
// Curve fitting to quadratic function
arma::mat A = arma::ones<arma::mat> (history_deep, 2);
A.col(1) = symbol_TOW_vec_s;
arma::mat coef_acc_phase(1,3);
arma::mat pinv_A = arma::pinv(A.t() * A) * A.t();
coef_acc_phase = pinv_A * acc_phase_vec_rads;
arma::mat coef_doppler(1,3);
coef_doppler = pinv_A * dopper_vec_hz;
arma::vec acc_phase_lin;
arma::vec carrier_doppler_lin;
acc_phase_lin = coef_acc_phase[0] + coef_acc_phase[1] * desired_symbol_TOW[0];
carrier_doppler_lin = coef_doppler[0] + coef_doppler[1] * desired_symbol_TOW[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_phase_rads = acc_phase_lin[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_Doppler_hz = carrier_doppler_lin[0];
}
}
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
consume_each(1); //one by one
for (unsigned int i = 0; i < d_nchannels; i++)
{
*out[i] = current_gnss_synchro[i];
}
if (noutput_items == 0)
{
LOG(WARNING) << "noutput_items = 0";
}
return 1;
}

View File

@ -1,76 +0,0 @@
/*!
* \file hybrid_observables_cc.h
* \brief Interface of the observables computation block for Galileo E1
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_HYBRID_OBSERVABLES_CC_H
#define GNSS_SDR_HYBRID_OBSERVABLES_CC_H
#include <fstream>
#include <string>
#include <gnuradio/block.h>
class hybrid_observables_cc;
typedef boost::shared_ptr<hybrid_observables_cc> hybrid_observables_cc_sptr;
hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int n_channels, bool dump, std::string dump_filename, unsigned int deep_history);
/*!
* \brief This class implements a block that computes Galileo observables
*/
class hybrid_observables_cc : public gr::block
{
public:
~hybrid_observables_cc ();
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
//Tracking observable history
std::vector<std::deque<double>> d_acc_carrier_phase_queue_rads;
std::vector<std::deque<double>> d_carrier_doppler_queue_hz;
std::vector<std::deque<double>> d_symbol_TOW_queue_s;
// class private vars
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;
std::string d_dump_filename;
std::ofstream d_dump_file;
};
#endif

View File

@ -1,365 +0,0 @@
/*!
* \file hybrid_observables_cc.cc
* \brief Implementation of the pseudorange computation block for Galileo E1
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_observables_cc.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <map>
#include <vector>
#include <utility>
#include <armadillo>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
using google::LogMessage;
hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
{
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
}
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
d_last_ref_TOW=0;
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
}
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
}
}
hybrid_observables_cc::~hybrid_observables_cc()
{
d_dump_file.close();
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
}
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
return (a.TOW_at_current_symbol_s) < (b);
}
int hybrid_observables_cc::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer
Gnss_Synchro current_gnss_synchro[d_nchannels];
if (d_nchannels != ninput_items.size())
{
LOG(WARNING) << "The Observables block is not well connected";
}
bool valid_observables=false;
/*
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
//TODO: optimize this: Copy the telemetry decoder data to local copy
current_gnss_synchro[i] = in[i][0];
/*
* 1.2 Assume no valid pseudoranges
*/
current_gnss_synchro[i].Flag_valid_pseudorange = false;
current_gnss_synchro[i].Pseudorange_m = 0.0;
for (int j=0;j<ninput_items[i];j++)
{
/*
* 1.2 Assume no valid pseudoranges
*/
if (in[i][j].Flag_valid_word)
{
valid_observables=true;
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
if (d_gnss_synchro_history_queue[i].size() > history_deep)
{
d_gnss_synchro_history_queue[i].pop_front();
}
}
else
{
// Clear the observables history for this channel
if (d_gnss_synchro_history_queue[i].size() > 0)
{
d_gnss_synchro_history_queue[i].clear();
}
}
}
}
/*
* 2. Compute RAW pseudoranges using COMMON TRANSMISSION TIME algorithm. Use only the valid channels (channels that are tracking a satellite)
*/
if(valid_observables==true)
{
std::map<int,Gnss_Synchro> current_gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (d_gnss_synchro_history_queue[i].size() > 0)
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].back().Channel_ID,
d_gnss_synchro_history_queue[i].back()));
}
}
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
//find the most distant satellite (minimum tow) to be the common TX time
gnss_synchro_map_iter = min_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), Hybrid_pairCompare_gnss_synchro_d_TOW);
double TOW_reference_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
//todo: Use also the Week number to avoid week rollover problems!
if (TOW_reference_s!=d_last_ref_TOW)
{
d_last_ref_TOW=TOW_reference_s;
//shift channels history to match the reference TOW
current_gnss_synchro_map.clear();
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (d_gnss_synchro_history_queue[i].size() > 0)
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
d_gnss_synchro_history_queue[i].end(),
TOW_reference_s,
Hybrid_valueCompare_gnss_synchro_d_TOW);
//check TOW difference less than a threshold
if (fabs(gnss_synchro_deque_iter->TOW_at_current_symbol_s-TOW_reference_s)<1e-4)
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,*gnss_synchro_deque_iter));
//discard other elements
int distance=std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
}else{
std::cout<<"not found valid TOW in history for SV "
<<gnss_synchro_deque_iter->Signal
<<" "<<gnss_synchro_deque_iter->PRN
<<" Diff tow: "<<gnss_synchro_deque_iter->TOW_at_current_symbol_s-TOW_reference_s
<<std::endl;
int n=0;
for(std::deque<Gnss_Synchro>::iterator tmp_iter = d_gnss_synchro_history_queue[i].begin(); tmp_iter != d_gnss_synchro_history_queue[i].end(); tmp_iter++)
{
std::cout<<"TOW History difference ["<<n
<<"]="<<tmp_iter->TOW_at_current_symbol_s-TOW_reference_s<<std::endl;
n++;
}
}
}
}
// Find the nearest satellite at common transmission time: the one who has the minimum PRN timestamp
gnss_synchro_map_iter = min_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), Hybrid_pairCompare_gnss_synchro_sample_counter);
//std::cout<<"OBS SV REF SAT: "<<gnss_synchro_map_iter->second.Signal<< " "<<gnss_synchro_map_iter->second.PRN<<" TOW Ref: "<<TOW_reference_s<<std::endl;
unsigned long int ref_sample_counter = gnss_synchro_map_iter->second.Tracking_sample_counter;
double ref_code_phase_samples = gnss_synchro_map_iter->second.Code_phase_samples;
// Now compute RX time differences due to the PRN alignment in the correlators
int delta_rx_time_samples;
double delta_rx_time_s;
double traveltime_ms;
double pseudorange_m;
for(gnss_synchro_map_iter = current_gnss_synchro_map.begin(); gnss_synchro_map_iter != current_gnss_synchro_map.end(); gnss_synchro_map_iter++)
{
//compute the pseudorange (no rx time offset correction)
delta_rx_time_samples = gnss_synchro_map_iter->second.Tracking_sample_counter-ref_sample_counter;
delta_rx_time_s = ((double)delta_rx_time_samples + gnss_synchro_map_iter->second.Code_phase_samples-ref_code_phase_samples)/((double)gnss_synchro_map_iter->second.fs);
traveltime_ms = delta_rx_time_s*1000.0 + GPS_STARTOFFSET_ms;
//convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = TOW_reference_s + GPS_STARTOFFSET_ms / 1000.0;
//std::cout<<gnss_synchro_map_iter->second.Signal<<" ["<<gnss_synchro_map_iter->second.PRN
// <<"] delta_TOW: "<<(gnss_synchro_map_iter->second.TOW_at_current_symbol_s-TOW_reference_s)*1000.0
// <<" [ms] delta_Prn_timestamp : "<<delta_rx_time_s*1000.0
// <<" [ms] Pr: "<<pseudorange_m<<" [m]"
// <<std::endl;
}
}
}
// if (d_Prn_timestamp_queue_s[gnss_synchro_iter->second.Channel_ID].size() >= history_deep)
// {
// arma::vec d_Prn_timestamp_vec_s;
// arma::vec symbol_TOW_vec_s;
// arma::vec dopper_vec_hz;
// arma::vec dopper_vec_interp_hz;
// arma::vec acc_phase_vec_rads;
// arma::vec acc_phase_vec_interp_rads;
// arma::vec desired_Prn_timestamp_s(1);
// arma::vec TOW_at_rx_time_interp_s;
//
// // compute interpolated observation values
// d_Prn_timestamp_vec_s = arma::vec(std::vector<double>(d_Prn_timestamp_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_Prn_timestamp_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
// symbol_TOW_vec_s = arma::vec(std::vector<double>(d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
// acc_phase_vec_rads = arma::vec(std::vector<double>(d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].begin(), d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].end()));
// dopper_vec_hz = arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
//
// desired_Prn_timestamp_s[0]=d_ref_PRN_rx_time_s;
//
// if (ref_channel_id != gnss_synchro_iter->second.Channel_ID)
// {
// // Interpolatio/Extrapoladion using Curve fitting to quadratic function
// //arma::interp1(d_Prn_timestamp_vec_s,symbol_TOW_vec_s,desired_Prn_timestamp_s,TOW_at_rx_time_interp_s); //no extrapolation support !
//
// arma::vec p1 = arma::polyfit(d_Prn_timestamp_vec_s,symbol_TOW_vec_s,1);
//
// TOW_at_rx_time_interp_s = arma::polyval(p1,desired_Prn_timestamp_s);
//
// //compute the pseudorange (no rx time offset correction)
// traveltime_ms = (TOW_reference_s - TOW_at_rx_time_interp_s[0]) * 1000.0
// + GPS_STARTOFFSET_ms;
//
// //std::cout<<gnss_synchro_iter->second.Signal<<"["<<gnss_synchro_iter->second.PRN<<"] TOW_at_rx_time_interp_s: "<<TOW_at_rx_time_interp_s[0]
// // <<" [s] delta_TOW_s: "<<(TOW_reference_s - gnss_synchro_iter->second.d_TOW_at_current_symbol_s)
// // <<" [s] delta_TOW_at_rx_time: "<<(TOW_reference_s - TOW_at_rx_time_interp_s[0])
// // <<" Pr: "<<pseudorange_m<<" [m]"
// // <<std::endl;
// }else{
// //std::cout<<"REF channel "<<ref_channel_id<<" PRN"<<gnss_synchro_iter->second.PRN<<std::endl;
// traveltime_ms = GPS_STARTOFFSET_ms;
// }
// }
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
for (unsigned int i = 0; i < d_nchannels; i++)
{
*out[i] = current_gnss_synchro[i];
}
if (noutput_items == 0)
{
LOG(WARNING) << "noutput_items = 0";
}
//Multi-rate consume!
for (unsigned int i=0; i<d_nchannels;i++)
{
consume(i,ninput_items[i]); //which input, how many items
}
return 1;
}

View File

@ -1,75 +0,0 @@
/*!
* \file hybrid_observables_cc.h
* \brief Interface of the observables computation block for Galileo E1
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_HYBRID_OBSERVABLES_CC_H
#define GNSS_SDR_HYBRID_OBSERVABLES_CC_H
#include <fstream>
#include <string>
#include <gnuradio/block.h>
#include "gnss_synchro.h"
class hybrid_observables_cc;
typedef boost::shared_ptr<hybrid_observables_cc> hybrid_observables_cc_sptr;
hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int n_channels, bool dump, std::string dump_filename, unsigned int deep_history);
/*!
* \brief This class implements a block that computes Galileo observables
*/
class hybrid_observables_cc : public gr::block
{
public:
~hybrid_observables_cc ();
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
//Tracking observable history
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
double d_last_ref_TOW;
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;
std::string d_dump_filename;
std::ofstream d_dump_file;
};
#endif

View File

@ -59,10 +59,6 @@ GalileoE1BTelemetryDecoder::GalileoE1BTelemetryDecoder(ConfigurationInterface* c
telemetry_decoder_ = galileo_e1b_make_telemetry_decoder_cc(satellite_, dump_); // TODO fix me
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
//decimation factor
int decimation_factor = configuration->property(role + ".decimation_factor", 1);
telemetry_decoder_->set_decimation(decimation_factor);
channel_ = 0;
}

View File

@ -58,9 +58,6 @@ GpsL1CaTelemetryDecoder::GpsL1CaTelemetryDecoder(ConfigurationInterface* configu
telemetry_decoder_ = gps_l1_ca_make_telemetry_decoder_cc(satellite_, dump_); // TODO fix me
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
//decimation factor
int decimation_factor = configuration->property(role + ".decimation_factor", 1);
telemetry_decoder_->set_decimation(decimation_factor);
DLOG(INFO) << "global navigation message queue assigned to telemetry_decoder ("<< telemetry_decoder_->unique_id() << ")";
channel_ = 0;
}

View File

@ -59,9 +59,6 @@ GpsL2CTelemetryDecoder::GpsL2CTelemetryDecoder(ConfigurationInterface* configura
telemetry_decoder_ = gps_l2c_make_telemetry_decoder_cc(satellite_, dump_); // TODO fix me
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
//decimation factor
int decimation_factor = configuration->property(role + ".decimation_factor", 1);
telemetry_decoder_->set_decimation(decimation_factor);
LOG(INFO) << "global navigation message queue assigned to telemetry_decoder (" << telemetry_decoder_->unique_id() << ")" << "role " << role;
channel_ = 0;
}

View File

@ -169,8 +169,6 @@ galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
d_flag_preamble = false;
d_channel = 0;
flag_TOW_set = false;
d_average_count = 0;
d_decimation_output_factor = 1;
}
@ -265,16 +263,16 @@ void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols,int
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
//debug
std::cout << "Galileo almanac received!" << std::endl;
LOG(INFO) << "GPS_to_Galileo time conversion:";
LOG(INFO) << "A0G=" << tmp_obj->A_0G_10;
LOG(INFO) << "A1G=" << tmp_obj->A_1G_10;
LOG(INFO) << "T0G=" << tmp_obj->t_0G_10;
LOG(INFO) << "WN_0G_10=" << tmp_obj->WN_0G_10;
LOG(INFO) << "Current parameters:";
LOG(INFO) << "d_TOW_at_current_symbol=" << d_TOW_at_current_symbol;
LOG(INFO) << "d_nav.WN_0=" << d_nav.WN_0;
DLOG(INFO) << "GPS_to_Galileo time conversion:";
DLOG(INFO) << "A0G=" << tmp_obj->A_0G_10;
DLOG(INFO) << "A1G=" << tmp_obj->A_1G_10;
DLOG(INFO) << "T0G=" << tmp_obj->t_0G_10;
DLOG(INFO) << "WN_0G_10=" << tmp_obj->WN_0G_10;
DLOG(INFO) << "Current parameters:";
DLOG(INFO) << "d_TOW_at_current_symbol=" << d_TOW_at_current_symbol;
DLOG(INFO) << "d_nav.WN_0=" << d_nav.WN_0;
delta_t = tmp_obj->A_0G_10 + tmp_obj->A_1G_10 * (d_TOW_at_current_symbol - tmp_obj->t_0G_10 + 604800 * (fmod((d_nav.WN_0 - tmp_obj->WN_0G_10), 64)));
LOG(INFO) << "delta_t=" << delta_t << "[s]";
DLOG(INFO) << "delta_t=" << delta_t << "[s]";
}
}
@ -476,27 +474,11 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items __attribut
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
d_average_count++;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
if (d_average_count == d_decimation_output_factor)
{
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
}
else
{
return 0;
}
}
void galileo_e1b_telemetry_decoder_cc::set_decimation(int decimation)
{
d_decimation_output_factor = decimation;
}

View File

@ -63,10 +63,6 @@ public:
void set_satellite(Gnss_Satellite satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
int flag_even_word_arrived;
/*!
* \brief Set decimation factor to average the GPS synchronization estimation output from the tracking module.
*/
void set_decimation(int decimation);
/*!
* \brief This is where all signal processing takes place
@ -113,10 +109,6 @@ private:
Gnss_Satellite d_satellite;
int d_channel;
// output averaging and decimation
int d_average_count;
int d_decimation_output_factor;
double d_TOW_at_Preamble;
double d_TOW_at_current_symbol;

View File

@ -378,29 +378,12 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
d_average_count++;
if (d_average_count == d_decimation_output_factor)
{
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
}
else
{
return 0;
}
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
}
void gps_l1_ca_telemetry_decoder_cc::set_decimation(int decimation)
{
d_decimation_output_factor = decimation;
}
void gps_l1_ca_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());

View File

@ -59,10 +59,6 @@ public:
~gps_l1_ca_telemetry_decoder_cc();
void set_satellite(Gnss_Satellite satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
/*!
* \brief Set decimation factor to average the GPS synchronization estimation output from the tracking module.
*/
void set_decimation(int decimation);
/*!
* \brief This is where all signal processing takes place

View File

@ -47,7 +47,6 @@ gps_l2c_make_telemetry_decoder_cc(Gnss_Satellite satellite, bool dump)
}
gps_l2c_telemetry_decoder_cc::gps_l2c_telemetry_decoder_cc(
Gnss_Satellite satellite, bool dump) : gr::block("gps_l2c_telemetry_decoder_cc",
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
@ -61,9 +60,7 @@ gps_l2c_telemetry_decoder_cc::gps_l2c_telemetry_decoder_cc(
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "GPS L2C M TELEMETRY PROCESSING: satellite " << d_satellite;
d_decimation_output_factor = 0;
//set_output_multiple (1);
d_average_count = 0;
d_channel = 0;
d_flag_valid_word = false;
d_TOW_at_current_symbol = 0;
@ -76,19 +73,12 @@ gps_l2c_telemetry_decoder_cc::gps_l2c_telemetry_decoder_cc(
}
gps_l2c_telemetry_decoder_cc::~gps_l2c_telemetry_decoder_cc()
{
d_dump_file.close();
}
void gps_l2c_telemetry_decoder_cc::set_decimation(int decimation)
{
d_decimation_output_factor = decimation;
}
int gps_l2c_telemetry_decoder_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
@ -196,18 +186,9 @@ int gps_l2c_telemetry_decoder_cc::general_work (int noutput_items __attribute__(
}
d_average_count++;
if (d_average_count == d_decimation_output_factor)
{
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
out[0] = current_synchro_data;
return 1;
}
else
{
return 0;
}
//3. Make the output (copy the object contents to the GNURadio reserved memory)
out[0] = current_synchro_data;
return 1;
}

View File

@ -69,7 +69,6 @@ public:
~gps_l2c_telemetry_decoder_cc();
void set_satellite(Gnss_Satellite satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
void set_decimation(int decimation);
/*!
* \brief This is where all signal processing takes place
@ -83,8 +82,6 @@ private:
gps_l2c_make_telemetry_decoder_cc(Gnss_Satellite satellite, bool dump);
gps_l2c_telemetry_decoder_cc(Gnss_Satellite satellite, bool dump);
bool d_dump;
Gnss_Satellite d_satellite;
int d_channel;
@ -101,9 +98,6 @@ private:
double d_TOW_at_Preamble;
bool d_flag_valid_word;
int d_decimation_output_factor;
int d_average_count;
Gps_CNAV_Navigation_Message d_CNAV_Message;
};