mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-12 11:10:33 +00:00
Merge branch next_gps_20ms_corr with next. Removing obsolete code and code cleaning
This commit is contained in:
commit
b2034896e1
@ -299,7 +299,6 @@ Acquisition_GPS.max_dwells=1
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||
;Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_GPS.item_type=gr_complex
|
||||
|
@ -299,7 +299,7 @@ Acquisition_GPS.max_dwells=1
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_GPS.item_type=gr_complex
|
||||
|
||||
|
87
conf/gnss-sdr_GPS_L1_ishort.conf
Normal file
87
conf/gnss-sdr_GPS_L1_ishort.conf
Normal file
@ -0,0 +1,87 @@
|
||||
; You can define your own receiver and invoke it by doing
|
||||
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
|
||||
;
|
||||
|
||||
[GNSS-SDR]
|
||||
|
||||
;######### GLOBAL OPTIONS ##################
|
||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||
GNSS-SDR.internal_fs_hz=4000000
|
||||
|
||||
;######### CONTROL_THREAD CONFIG ############
|
||||
ControlThread.wait_for_flowgraph=false
|
||||
|
||||
;######### SIGNAL_SOURCE CONFIG ############
|
||||
SignalSource.implementation=File_Signal_Source
|
||||
SignalSource.filename=/media/javier/SISTEMA/signals/test gestalt 22_1_2016/signal_source_gr_complex_4MSPS.dat
|
||||
SignalSource.item_type=gr_complex
|
||||
SignalSource.sampling_frequency=4000000
|
||||
SignalSource.freq=1575420000
|
||||
SignalSource.samples=250000000
|
||||
SignalSource.repeat=false
|
||||
SignalSource.dump=false
|
||||
SignalSource.dump_filename=../data/signal_source.dat
|
||||
SignalSource.enable_throttle_control=false
|
||||
|
||||
|
||||
;######### SIGNAL_CONDITIONER CONFIG ############
|
||||
SignalConditioner.implementation=Pass_Through
|
||||
|
||||
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
Channels_1C.count=8
|
||||
Channels.in_acquisition=1
|
||||
Channel.signal=1C
|
||||
|
||||
|
||||
;######### ACQUISITION GLOBAL CONFIG ############
|
||||
Acquisition_1C.dump=false
|
||||
Acquisition_1C.dump_filename=./acq_dump.dat
|
||||
Acquisition_1C.item_type=gr_complex
|
||||
Acquisition_1C.if=0
|
||||
Acquisition_1C.sampled_ms=1
|
||||
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition_1C.threshold=0.006
|
||||
;Acquisition_1C.pfa=0.01
|
||||
Acquisition_1C.doppler_max=10000
|
||||
Acquisition_1C.doppler_step=500
|
||||
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||
Tracking_1C.item_type=gr_complex
|
||||
Tracking_1C.if=0
|
||||
Tracking_1C.dump=false
|
||||
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||
Tracking_1C.pll_bw_hz=45.0;
|
||||
Tracking_1C.dll_bw_hz=2.0;
|
||||
Tracking_1C.order=3;
|
||||
|
||||
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||
TelemetryDecoder_1C.dump=false
|
||||
TelemetryDecoder_1C.decimation_factor=1;
|
||||
|
||||
;######### OBSERVABLES CONFIG ############
|
||||
Observables.implementation=GPS_L1_CA_Observables
|
||||
Observables.dump=false
|
||||
Observables.dump_filename=./observables.dat
|
||||
|
||||
|
||||
;######### PVT CONFIG ############
|
||||
PVT.implementation=GPS_L1_CA_PVT
|
||||
PVT.averaging_depth=100
|
||||
PVT.flag_averaging=false
|
||||
PVT.output_rate_ms=10
|
||||
PVT.display_rate_ms=500
|
||||
PVT.dump_filename=./PVT
|
||||
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
|
||||
PVT.flag_nmea_tty_port=false;
|
||||
PVT.nmea_dump_devname=/dev/pts/4
|
||||
PVT.flag_rtcm_server=false
|
||||
PVT.flag_rtcm_tty_port=false
|
||||
PVT.rtcm_dump_devname=/dev/pts/1
|
||||
PVT.dump=false
|
||||
|
||||
;######### OUTPUT_FILTER CONFIG ############
|
||||
OutputFilter.implementation=Null_Sink_Output_Filter
|
||||
OutputFilter.item_type=gr_complex
|
@ -210,7 +210,7 @@ Acquisition_1C.max_dwells=15
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] [GPS_L1_CA_DLL_PLL_Optim_Tracking]
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_1C.item_type=gr_complex
|
||||
|
||||
|
@ -104,7 +104,7 @@ Acquisition_1C.max_dwells=15
|
||||
|
||||
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||
Tracking_1C.item_type=gr_complex
|
||||
Tracking_1C.if=0
|
||||
Tracking_1C.dump=false
|
||||
|
@ -7,29 +7,28 @@
|
||||
|
||||
;######### GLOBAL OPTIONS ##################
|
||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||
GNSS-SDR.internal_fs_hz=4000000
|
||||
GNSS-SDR.internal_fs_hz=4092000
|
||||
|
||||
;######### CONTROL_THREAD CONFIG ############
|
||||
ControlThread.wait_for_flowgraph=false
|
||||
|
||||
;######### SIGNAL_SOURCE CONFIG ############
|
||||
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||
SignalSource.implementation=File_Signal_Source
|
||||
|
||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||
SignalSource.filename=../data/agilent_cap2.dat
|
||||
SignalSource.filename=/home/javier/signals/GPS_sim1.dat
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
SignalSource.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||
SignalSource.sampling_frequency=4000000
|
||||
SignalSource.sampling_frequency=4092000
|
||||
|
||||
;#freq: RF front-end center frequency in [Hz]
|
||||
SignalSource.freq=1575420000
|
||||
|
||||
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
||||
SignalSource.samples=250000000
|
||||
SignalSource.samples=0
|
||||
|
||||
;#repeat: Repeat the processing file. Disable this option in this version
|
||||
SignalSource.repeat=false
|
||||
@ -51,24 +50,21 @@ SignalSource.enable_throttle_control=false
|
||||
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
||||
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
;SignalConditioner.implementation=Signal_Conditioner
|
||||
SignalConditioner.implementation=Pass_Through
|
||||
|
||||
;######### DATA_TYPE_ADAPTER CONFIG ############
|
||||
;## Changes the type of input data. Please disable it in this version.
|
||||
;## Changes the type of input data.
|
||||
;#implementation: [Pass_Through] disables this block
|
||||
DataTypeAdapter.implementation=Pass_Through
|
||||
DataTypeAdapter.item_type=gr_complex
|
||||
|
||||
;######### INPUT_FILTER CONFIG ############
|
||||
;## Filter the input data. Can be combined with frequency translation for IF signals
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Fir_Filter] enables a FIR Filter
|
||||
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
|
||||
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
|
||||
;# that shifts IF down to zero Hz.
|
||||
|
||||
;InputFilter.implementation=Fir_Filter
|
||||
;InputFilter.implementation=Freq_Xlating_Fir_Filter
|
||||
InputFilter.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the filtered data to a file.
|
||||
@ -79,7 +75,9 @@ InputFilter.dump_filename=../data/input_filter.dat
|
||||
|
||||
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
||||
;#These options are based on parameters of gnuradio's function: gr_remez.
|
||||
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
|
||||
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
|
||||
;#reponse given a set of band edges, the desired reponse on those bands,
|
||||
;#and the weight given to the error in those bands.
|
||||
|
||||
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
||||
InputFilter.input_item_type=gr_complex
|
||||
@ -125,12 +123,16 @@ InputFilter.filter_type=bandpass
|
||||
;The minimum value is 16; higher values are slower to compute the filter.
|
||||
InputFilter.grid_density=16
|
||||
|
||||
;# Original sampling frequency stored in the signal file
|
||||
InputFilter.sampling_frequency=4092000
|
||||
|
||||
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||
|
||||
InputFilter.sampling_frequency=4000000
|
||||
InputFilter.IF=0
|
||||
InputFilter.IF=5499998.47412109
|
||||
|
||||
;# Decimation factor after the frequency tranaslating block
|
||||
InputFilter.decimation_factor=8
|
||||
|
||||
|
||||
;######### RESAMPLER CONFIG ############
|
||||
@ -139,35 +141,43 @@ InputFilter.IF=0
|
||||
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
||||
;Resampler.implementation=Direct_Resampler
|
||||
Resampler.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the resamplered data to a file.
|
||||
Resampler.dump=false
|
||||
;#dump_filename: Log path and filename.
|
||||
Resampler.dump_filename=../data/resampler.dat
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Resampler.item_type=gr_complex
|
||||
|
||||
;#sample_freq_in: the sample frequency of the input signal
|
||||
Resampler.sample_freq_in=8000000
|
||||
|
||||
;#sample_freq_out: the desired sample frequency of the output signal
|
||||
Resampler.sample_freq_out=4000000
|
||||
|
||||
_1C
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
;#count: Number of available GPS satellite channels.
|
||||
Channels_1C.count=8
|
||||
Channels_1C.count=1
|
||||
;#count: Number of available Galileo satellite channels.
|
||||
Channels_1B.count=0
|
||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||
Channels.in_acquisition=1
|
||||
|
||||
;#signal:
|
||||
;# "1C" GPS L1 C/A
|
||||
;# "2S" GPS L2 L2C (M)
|
||||
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
|
||||
;# "5X" GALILEO E5a I+Q
|
||||
|
||||
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
||||
Channel.signal=1C
|
||||
Channel0.signal=1C
|
||||
Channel1.signal=1B
|
||||
Channel2.signal=1B
|
||||
Channel3.signal=1B
|
||||
Channel4.signal=1B
|
||||
Channel5.signal=1B
|
||||
Channel6.signal=1B
|
||||
Channel7.signal=1B
|
||||
Channel8.signal=1B
|
||||
Channel9.signal=1B
|
||||
Channel10.signal=1B
|
||||
Channel11.signal=1B
|
||||
Channel12.signal=1B
|
||||
Channel13.signal=1B
|
||||
Channel14.signal=1B
|
||||
Channel15.signal=1B
|
||||
|
||||
|
||||
;######### ACQUISITION GLOBAL CONFIG ############
|
||||
;######### GPS ACQUISITION CONFIG ############
|
||||
|
||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||
Acquisition_1C.dump=false
|
||||
;#filename: Log path and filename
|
||||
@ -180,20 +190,44 @@ Acquisition_1C.if=0
|
||||
Acquisition_1C.sampled_ms=1
|
||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
Acquisition_1C.use_CFAR_algorithm=false;
|
||||
;#threshold: Acquisition threshold
|
||||
Acquisition_1C.threshold=0.008
|
||||
Acquisition_1C.threshold=30
|
||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
;Acquisition_1C.pfa=0.01
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition_1C.doppler_max=10000
|
||||
Acquisition_1C.doppler_max=5000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition_1C.doppler_step=500
|
||||
Acquisition_1C.doppler_step=100
|
||||
|
||||
|
||||
;######### GALILEO ACQUISITION CONFIG ############
|
||||
|
||||
;######### TRACKING GLOBAL CONFIG ############
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||
Acquisition_1B.dump=false
|
||||
;#filename: Log path and filename
|
||||
Acquisition_1B.dump_filename=./acq_dump.dat
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Acquisition_1B.item_type=gr_complex
|
||||
;#if: Signal intermediate frequency in [Hz]
|
||||
Acquisition_1B.if=0
|
||||
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||
Acquisition_1B.sampled_ms=4
|
||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
|
||||
;#threshold: Acquisition threshold
|
||||
;Acquisition_1B.threshold=0
|
||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1B.pfa=0.0000002
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition_1B.doppler_max=15000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition_1B.doppler_step=125
|
||||
|
||||
;######### TRACKING GPS CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_1C.item_type=gr_complex
|
||||
|
||||
@ -201,36 +235,83 @@ Tracking_1C.item_type=gr_complex
|
||||
Tracking_1C.if=0
|
||||
|
||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||
Tracking_1C.dump=false
|
||||
Tracking_1C.dump=true
|
||||
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking_1C.dump_filename=./tracking_ch_
|
||||
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||
|
||||
;# Extended correlation after telemetry bit synchronization
|
||||
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
|
||||
;# Longer integration period require more stable front-end LO
|
||||
|
||||
Tracking_1C.extend_correlation_ms=10
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.pll_bw_hz=50.0;
|
||||
Tracking_1C.pll_bw_hz=40;
|
||||
Tracking_1C.pll_bw_narrow_hz=25;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.dll_bw_hz=2.0;
|
||||
|
||||
Tracking_1C.dll_bw_narrow_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.fll_bw_hz=10.0;
|
||||
Tracking_1C.fll_bw_hz=2.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking_1C.order=3;
|
||||
|
||||
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
|
||||
Tracking_1C.early_late_space_chips=0.5;
|
||||
;######### TRACKING GALILEO CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_1B.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||
Tracking_1B.if=0
|
||||
|
||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||
Tracking_1B.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking_1B.dump_filename=../data/veml_tracking_ch_
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.pll_bw_hz=15.0;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.dll_bw_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.fll_bw_hz=10.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking_1B.order=3;
|
||||
|
||||
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
|
||||
Tracking_1B.early_late_space_chips=0.15;
|
||||
|
||||
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
|
||||
Tracking_1B.very_early_late_space_chips=0.6;
|
||||
|
||||
|
||||
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
|
||||
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||
TelemetryDecoder_1C.dump=false
|
||||
;#decimation factor
|
||||
TelemetryDecoder_1C.decimation_factor=1;
|
||||
TelemetryDecoder_1C.decimation_factor=4;
|
||||
|
||||
;######### TELEMETRY DECODER GALILEO CONFIG ############
|
||||
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
|
||||
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
|
||||
TelemetryDecoder_1B.dump=false
|
||||
TelemetryDecoder_1B_factor=4;
|
||||
|
||||
;######### OBSERVABLES CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
||||
Observables.implementation=GPS_L1_CA_Observables
|
||||
Observables.implementation=Hybrid_Observables
|
||||
|
||||
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
||||
Observables.dump=false
|
||||
@ -241,40 +322,29 @@ Observables.dump_filename=./observables.dat
|
||||
|
||||
;######### PVT CONFIG ############
|
||||
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
||||
PVT.implementation=GPS_L1_CA_PVT
|
||||
PVT.implementation=Hybrid_PVT
|
||||
|
||||
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
||||
PVT.averaging_depth=100
|
||||
PVT.averaging_depth=10
|
||||
|
||||
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
||||
PVT.flag_averaging=false
|
||||
|
||||
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
||||
PVT.output_rate_ms=10
|
||||
PVT.output_rate_ms=10;
|
||||
|
||||
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
||||
PVT.display_rate_ms=500
|
||||
PVT.display_rate_ms=500;
|
||||
|
||||
;# KML, GeoJSON, NMEA and RTCM output configuration
|
||||
|
||||
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||
PVT.dump_filename=./PVT
|
||||
|
||||
;#nmea_dump_filename: NMEA log path and filename
|
||||
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
|
||||
|
||||
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
|
||||
PVT.flag_nmea_tty_port=false;
|
||||
|
||||
;#nmea_dump_devname: serial device descriptor for NMEA logging
|
||||
PVT.nmea_dump_devname=/dev/pts/4
|
||||
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||
PVT.dump=false
|
||||
|
||||
PVT.flag_rtcm_server=false
|
||||
PVT.flag_rtcm_tty_port=false
|
||||
PVT.rtcm_dump_devname=/dev/pts/1
|
||||
|
||||
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||
PVT.dump=true
|
||||
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||
PVT.dump_filename=./PVT
|
||||
|
||||
;######### OUTPUT_FILTER CONFIG ############
|
||||
;# Receiver output filter: Leave this block disabled in this version
|
@ -19,7 +19,7 @@ ControlThread.wait_for_flowgraph=false
|
||||
SignalSource.implementation=Nsr_File_Signal_Source
|
||||
|
||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||
SignalSource.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
|
||||
SignalSource.filename=/media/javier/SISTEMA/signals/ifen/E1L1_FE0_Band0.stream
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
SignalSource.item_type=byte
|
||||
@ -150,7 +150,7 @@ Resampler.implementation=Pass_Through
|
||||
;#count: Number of available GPS satellite channels.
|
||||
Channels_1C.count=8
|
||||
;#count: Number of available Galileo satellite channels.
|
||||
Channels_1B.count=8
|
||||
Channels_1B.count=0
|
||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||
Channels.in_acquisition=1
|
||||
|
||||
@ -198,7 +198,7 @@ Acquisition_1C.threshold=0.0075
|
||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
;Acquisition_1C.pfa=0.01
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition_1C.doppler_max=10000
|
||||
Acquisition_1C.doppler_max=5000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition_1C.doppler_step=500
|
||||
|
||||
@ -242,11 +242,20 @@ Tracking_1C.dump=false
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||
|
||||
;# Extended correlation after telemetry bit synchronization
|
||||
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
|
||||
;# Longer integration period require more stable front-end LO
|
||||
|
||||
Tracking_1C.extend_correlation_ms=10
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.pll_bw_hz=45.0;
|
||||
|
||||
Tracking_1C.pll_bw_hz=40;
|
||||
Tracking_1C.pll_bw_narrow_hz=40;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.dll_bw_hz=2.0;
|
||||
Tracking_1C.dll_bw_narrow_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.fll_bw_hz=10.0;
|
||||
|
@ -57,7 +57,7 @@ galileo_e1_ls_pvt::galileo_e1_ls_pvt(int nchannels, std::string dump_filename, b
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||
}
|
||||
@ -164,7 +164,7 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
||||
DLOG(INFO) << "obs="<< obs;
|
||||
DLOG(INFO) << "W=" << W;
|
||||
|
||||
mypos = galileo_e1_ls_pvt::leastSquarePos(satpos, obs, W);
|
||||
mypos = leastSquarePos(satpos, obs, W);
|
||||
|
||||
// Compute Gregorian time
|
||||
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
|
||||
@ -176,7 +176,8 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
||||
|
||||
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||
|
||||
galileo_e1_ls_pvt::cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||
d_rx_dt_m = mypos(3)/GALILEO_C_m_s; // Convert RX time offset from meters to seconds
|
||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||
if (d_height_m > 50000)
|
||||
{
|
||||
@ -185,10 +186,10 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
||||
}
|
||||
DLOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
|
||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||
<< " [deg], Height= " << d_height_m << " [m]";
|
||||
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||
|
||||
// ###### Compute DOPs ########
|
||||
galileo_e1_ls_pvt::compute_DOP();
|
||||
compute_DOP();
|
||||
|
||||
// ######## LOG FILE #########
|
||||
if(d_flag_dump_enabled == true)
|
||||
|
@ -58,7 +58,7 @@ gps_l1_ca_ls_pvt::gps_l1_ca_ls_pvt(int nchannels, std::string dump_filename, boo
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||
}
|
||||
@ -167,11 +167,12 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
||||
DLOG(INFO) << "obs=" << obs;
|
||||
DLOG(INFO) << "W=" << W;
|
||||
|
||||
mypos = gps_l1_ca_ls_pvt::leastSquarePos(satpos, obs, W);
|
||||
|
||||
mypos = leastSquarePos(satpos, obs, W);
|
||||
DLOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||
|
||||
gps_l1_ca_ls_pvt::cart2geo(mypos(0), mypos(1), mypos(2), 4);
|
||||
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||
|
||||
d_rx_dt_m = mypos(3)/GPS_C_m_s; // Convert RX time offset from meters to seconds
|
||||
|
||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||
if (d_height_m > 50000)
|
||||
@ -188,10 +189,10 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
||||
|
||||
LOG(INFO) << "(new)Position at " << boost::posix_time::to_simple_string(p_time)
|
||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||
<< " [deg], Height= " << d_height_m << " [m]";
|
||||
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||
|
||||
// ###### Compute DOPs ########
|
||||
gps_l1_ca_ls_pvt::compute_DOP();
|
||||
compute_DOP();
|
||||
|
||||
// ######## LOG FILE #########
|
||||
if(d_flag_dump_enabled == true)
|
||||
@ -225,14 +226,14 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
||||
tmp_double = d_height_m;
|
||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
// MOVING AVERAGE PVT
|
||||
gps_l1_ca_ls_pvt::pos_averaging(flag_averaging);
|
||||
pos_averaging(flag_averaging);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -60,7 +60,7 @@ hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||
}
|
||||
@ -98,8 +98,8 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
||||
int GPS_week = 0;
|
||||
double utc = 0.0;
|
||||
double GST = 0.0;
|
||||
double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
|
||||
double TX_time_corrected_s;
|
||||
//double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
|
||||
double TX_time_corrected_s = 0.0;
|
||||
double SV_clock_bias_s = 0.0;
|
||||
|
||||
d_flag_averaging = flag_averaging;
|
||||
@ -239,8 +239,8 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
||||
DLOG(INFO) << "obs="<< obs;
|
||||
DLOG(INFO) << "W=" << W;
|
||||
|
||||
mypos = hybrid_ls_pvt::leastSquarePos(satpos, obs, W);
|
||||
|
||||
mypos = leastSquarePos(satpos, obs, W);
|
||||
d_rx_dt_m = mypos(3)/GPS_C_m_s; // Convert RX time offset from meters to seconds
|
||||
// Compute GST and Gregorian time
|
||||
if( GST != 0.0)
|
||||
{
|
||||
@ -251,30 +251,27 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
||||
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);
|
||||
}
|
||||
// get time string Gregorian calendar
|
||||
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
|
||||
double secondsperweek = 604800.0; // number of seconds in one week (7*24*60*60)
|
||||
boost::posix_time::time_duration t = boost::posix_time::seconds(utc + secondsperweek * static_cast<double>(GPS_week));
|
||||
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
|
||||
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
|
||||
d_position_UTC_time = p_time;
|
||||
DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||
|
||||
hybrid_ls_pvt::cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||
if (d_height_m > 50000)
|
||||
{
|
||||
b_valid_position = false;
|
||||
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||
<< " [deg], Height= " << d_height_m << " [m]";
|
||||
|
||||
//std::cout << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
||||
// << " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||
// << " [deg], Height= " << d_height_m << " [m]" << std::endl;
|
||||
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << mypos(3) << " [s]";
|
||||
return false;
|
||||
}
|
||||
|
||||
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||
<< " [deg], Height= " << d_height_m << " [m]";
|
||||
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||
|
||||
// ###### Compute DOPs ########
|
||||
hybrid_ls_pvt::compute_DOP();
|
||||
@ -318,7 +315,7 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
||||
}
|
||||
|
||||
// MOVING AVERAGE PVT
|
||||
hybrid_ls_pvt::pos_averaging(flag_averaging);
|
||||
pos_averaging(flag_averaging);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -48,9 +48,10 @@ class Pvt_Solution
|
||||
public:
|
||||
Pvt_Solution();
|
||||
|
||||
double d_latitude_d;
|
||||
double d_longitude_d;
|
||||
double d_height_m;
|
||||
double d_latitude_d; //!< RX position Latitude WGS84 [deg]
|
||||
double d_longitude_d; //!< RX position Longitude WGS84 [deg]
|
||||
double d_height_m; //!< RX position height WGS84 [m]
|
||||
double d_rx_dt_m; //!< RX time offset [s]
|
||||
|
||||
boost::posix_time::ptime d_position_UTC_time;
|
||||
|
||||
|
@ -119,12 +119,17 @@ void Channel::connect(gr::top_block_sptr top_block)
|
||||
trk_->connect(top_block);
|
||||
nav_->connect(top_block);
|
||||
|
||||
//Synchronous ports
|
||||
top_block->connect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
|
||||
DLOG(INFO) << "pass_through_ -> acquisition";
|
||||
top_block->connect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0);
|
||||
DLOG(INFO) << "pass_through_ -> tracking";
|
||||
top_block->connect(trk_->get_right_block(), 0, nav_->get_left_block(), 0);
|
||||
DLOG(INFO) << "tracking -> telemetry_decoder";
|
||||
|
||||
// Message ports
|
||||
top_block->msg_connect(nav_->get_left_block(),pmt::mp("preamble_timestamp_s"),trk_->get_right_block(),pmt::mp("preamble_timestamp_s"));
|
||||
DLOG(INFO) << "MSG FEEDBACK CHANNEL telemetry_decoder -> tracking";
|
||||
connected_ = true;
|
||||
}
|
||||
|
||||
|
@ -120,6 +120,8 @@ galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
|
||||
gr::block("galileo_e1b_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry Bit transition synchronization port out
|
||||
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
|
@ -197,6 +197,8 @@ galileo_e5a_telemetry_decoder_cc::galileo_e5a_telemetry_decoder_cc(
|
||||
gr::block("galileo_e5a_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry Bit transition synchronization port out
|
||||
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
|
@ -29,11 +29,6 @@
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \todo Clean this code and move the telemetry definitions to GPS_L1_CA system definitions file
|
||||
*/
|
||||
|
||||
|
||||
#include "gps_l1_ca_telemetry_decoder_cc.h"
|
||||
#include <iostream>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
@ -47,30 +42,18 @@
|
||||
#endif
|
||||
|
||||
using google::LogMessage;
|
||||
/*!
|
||||
* \todo name and move the magic numbers to GPS_L1_CA.h
|
||||
*/
|
||||
|
||||
gps_l1_ca_telemetry_decoder_cc_sptr
|
||||
gps_l1_ca_make_telemetry_decoder_cc(Gnss_Satellite satellite, boost::shared_ptr<gr::msg_queue> queue, bool dump)
|
||||
{
|
||||
return gps_l1_ca_telemetry_decoder_cc_sptr(new gps_l1_ca_telemetry_decoder_cc(satellite, queue, dump));
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gps_l1_ca_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
|
||||
{
|
||||
if (noutput_items != 0)
|
||||
{
|
||||
for (unsigned i = 0; i < 3; i++)
|
||||
{
|
||||
ninput_items_required[i] = d_samples_per_bit * 8; //set the required sample history
|
||||
}
|
||||
}
|
||||
ninput_items_required[0] = GPS_CA_PREAMBLE_LENGTH_SYMBOLS; //set the required sample history
|
||||
}
|
||||
|
||||
|
||||
|
||||
gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
||||
Gnss_Satellite satellite,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
@ -78,24 +61,24 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
||||
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry Bit transition synchronization port out
|
||||
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||
d_samples_per_bit = ( GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS ) / GPS_CA_TELEMETRY_RATE_BITS_SECOND;
|
||||
//d_preamble_duration_seconds = (1.0 / GPS_CA_TELEMETRY_RATE_BITS_SECOND) * GPS_CA_PREAMBLE_LENGTH_BITS;
|
||||
//std::cout<<"d_preamble_duration_seconds="<<d_preamble_duration_seconds<<"\r\n";
|
||||
|
||||
// set the preamble
|
||||
unsigned short int preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE;
|
||||
|
||||
memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GPS_CA_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
|
||||
|
||||
// preamble bits to sampled symbols
|
||||
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_BITS * d_samples_per_bit);
|
||||
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_SYMBOLS);
|
||||
int n = 0;
|
||||
for (int i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++)
|
||||
{
|
||||
for (unsigned int j = 0; j < d_samples_per_bit; j++)
|
||||
for (unsigned int j = 0; j < GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; j++)
|
||||
{
|
||||
if (d_preambles_bits[i] == 1)
|
||||
{
|
||||
@ -108,10 +91,7 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
||||
n++;
|
||||
}
|
||||
}
|
||||
d_sample_counter = 0;
|
||||
//d_preamble_code_phase_seconds = 0;
|
||||
d_stat = 0;
|
||||
d_preamble_index = 0;
|
||||
d_symbol_accumulator = 0;
|
||||
d_symbol_accumulator_counter = 0;
|
||||
d_frame_bit_index = 0;
|
||||
@ -130,7 +110,6 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
||||
d_channel = 0;
|
||||
Prn_timestamp_at_preamble_ms = 0.0;
|
||||
flag_PLL_180_deg_phase_locked = false;
|
||||
//set_history(d_samples_per_bit*8); // At least a history of 8 bits are needed to correlate with the preamble
|
||||
}
|
||||
|
||||
|
||||
@ -140,8 +119,6 @@ gps_l1_ca_telemetry_decoder_cc::~gps_l1_ca_telemetry_decoder_cc()
|
||||
d_dump_file.close();
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(unsigned int gpsword)
|
||||
{
|
||||
unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity;
|
||||
@ -169,88 +146,92 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
int corr_value = 0;
|
||||
int preamble_diff = 0;
|
||||
int preamble_diff_ms = 0;
|
||||
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
d_sample_counter++; //count for the processed samples
|
||||
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
|
||||
|
||||
// TODO Optimize me!
|
||||
//******* preamble correlation ********
|
||||
for (unsigned int i = 0; i < d_samples_per_bit*8; i++)
|
||||
for (unsigned int i = 0; i < GPS_CA_PREAMBLE_LENGTH_SYMBOLS; i++)
|
||||
{
|
||||
if (in[0][i].Prompt_I < 0) // symbols clipping
|
||||
{
|
||||
corr_value -= d_preambles_symbols[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
corr_value += d_preambles_symbols[i];
|
||||
}
|
||||
if (in[0][i].Flag_valid_symbol_output==true)
|
||||
{
|
||||
if (in[0][i].Prompt_I < 0) // symbols clipping
|
||||
{
|
||||
corr_value -= d_preambles_symbols[i]*in[0][i].correlation_length_ms;
|
||||
}
|
||||
else
|
||||
{
|
||||
corr_value += d_preambles_symbols[i]*in[0][i].correlation_length_ms;
|
||||
}
|
||||
}
|
||||
if (corr_value>=GPS_CA_PREAMBLE_LENGTH_SYMBOLS) break;
|
||||
}
|
||||
d_flag_preamble = false;
|
||||
|
||||
//******* frame sync ******************
|
||||
if (abs(corr_value) >= 160)
|
||||
{
|
||||
//TODO: Rewrite with state machine
|
||||
if (d_stat == 0)
|
||||
{
|
||||
d_GPS_FSM.Event_gps_word_preamble();
|
||||
d_preamble_index = d_sample_counter;//record the preamble sample stamp
|
||||
LOG(INFO) << "Preamble detection for SAT " << this->d_satellite;
|
||||
d_symbol_accumulator = 0; //sync the symbol to bits integrator
|
||||
d_symbol_accumulator_counter = 0;
|
||||
d_frame_bit_index = 8;
|
||||
d_stat = 1; // enter into frame pre-detection status
|
||||
}
|
||||
else if (d_stat == 1) //check 6 seconds of preamble separation
|
||||
{
|
||||
preamble_diff = d_sample_counter - d_preamble_index;
|
||||
if (abs(preamble_diff - 6000) < 1)
|
||||
{
|
||||
d_GPS_FSM.Event_gps_word_preamble();
|
||||
d_flag_preamble = true;
|
||||
d_preamble_index = d_sample_counter; //record the preamble sample stamp (t_P)
|
||||
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;// - d_preamble_duration_seconds; //record the PRN start sample index associated to the preamble
|
||||
if (abs(corr_value) == GPS_CA_PREAMBLE_LENGTH_SYMBOLS)
|
||||
{
|
||||
if (d_stat == 0)
|
||||
{
|
||||
d_GPS_FSM.Event_gps_word_preamble();
|
||||
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;//record the preamble sample stamp
|
||||
DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "in[0][0].Tracking_timestamp_secs="<<round(in[0][0].Tracking_timestamp_secs * 1000.0) <<std::endl;
|
||||
//sync the symbol to bits integrator
|
||||
d_symbol_accumulator = 0;
|
||||
d_symbol_accumulator_counter = 0;
|
||||
d_frame_bit_index = 0;
|
||||
d_stat = 1; // enter into frame pre-detection status
|
||||
}
|
||||
else if (d_stat == 1) //check 6 seconds of preamble separation
|
||||
{
|
||||
preamble_diff_ms = round((in[0][0].Tracking_timestamp_secs - d_preamble_time_seconds)*1000.0);
|
||||
if (abs(preamble_diff_ms - GPS_SUBFRAME_MS) < 1)
|
||||
{
|
||||
DLOG(INFO) << "Preamble confirmation for SAT " << this->d_satellite << "in[0][0].Tracking_timestamp_secs="<<round(in[0][0].Tracking_timestamp_secs * 1000.0) <<std::endl;
|
||||
d_GPS_FSM.Event_gps_word_preamble();
|
||||
d_flag_preamble = true;
|
||||
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;//record the PRN start sample index associated to the preamble
|
||||
if (!d_flag_frame_sync)
|
||||
{
|
||||
//send asynchronous message to tracking to inform of frame sync and extend correlation time
|
||||
pmt::pmt_t value = pmt::from_double(d_preamble_time_seconds-0.001);
|
||||
this->message_port_pub(pmt::mp("preamble_timestamp_s"),value);
|
||||
|
||||
if (!d_flag_frame_sync)
|
||||
{
|
||||
d_flag_frame_sync = true;
|
||||
if (corr_value < 0)
|
||||
{
|
||||
flag_PLL_180_deg_phase_locked = true; //PLL is locked to opposite phase!
|
||||
LOG(INFO) << " PLL in opposite phase for Sat "<< this->d_satellite.get_PRN();
|
||||
}
|
||||
else
|
||||
{
|
||||
flag_PLL_180_deg_phase_locked = false;
|
||||
}
|
||||
LOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_stat == 1)
|
||||
{
|
||||
preamble_diff = d_sample_counter - d_preamble_index;
|
||||
if (preamble_diff > 6001)
|
||||
{
|
||||
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff;
|
||||
d_stat = 0; //lost of frame sync
|
||||
d_flag_frame_sync = false;
|
||||
flag_TOW_set = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
d_flag_frame_sync = true;
|
||||
if (corr_value < 0)
|
||||
{
|
||||
flag_PLL_180_deg_phase_locked = true; //PLL is locked to opposite phase!
|
||||
DLOG(INFO) << " PLL in opposite phase for Sat "<< this->d_satellite.get_PRN();
|
||||
}
|
||||
else
|
||||
{
|
||||
flag_PLL_180_deg_phase_locked = false;
|
||||
}
|
||||
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
|
||||
}
|
||||
}else{
|
||||
if (preamble_diff_ms > GPS_SUBFRAME_MS+1)
|
||||
{
|
||||
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff_ms= " << preamble_diff_ms<<std::endl;
|
||||
d_stat = 0; //lost of frame sync
|
||||
d_flag_frame_sync = false;
|
||||
flag_TOW_set = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//******* SYMBOL TO BIT *******
|
||||
d_symbol_accumulator += in[0][d_samples_per_bit*8 - 1].Prompt_I; // accumulate the input value in d_symbol_accumulator
|
||||
d_symbol_accumulator_counter++;
|
||||
|
||||
if (in[0][0].Flag_valid_symbol_output==true)
|
||||
{
|
||||
// extended correlation to bit period is enabled in tracking!
|
||||
d_symbol_accumulator += in[0][0].Prompt_I; // accumulate the input value in d_symbol_accumulator
|
||||
d_symbol_accumulator_counter+=in[0][0].correlation_length_ms;
|
||||
}
|
||||
if (d_symbol_accumulator_counter == 20)
|
||||
{
|
||||
if (d_symbol_accumulator > 0)
|
||||
@ -356,7 +337,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
|
||||
tmp_double = d_TOW_at_Preamble;
|
||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure & e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||
}
|
||||
@ -425,4 +406,3 @@ void gps_l1_ca_telemetry_decoder_cc::set_channel(int channel)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -100,13 +100,12 @@ private:
|
||||
// class private vars
|
||||
|
||||
int *d_preambles_symbols;
|
||||
unsigned int d_samples_per_bit;
|
||||
long unsigned int d_sample_counter;
|
||||
long unsigned int d_preamble_index;
|
||||
unsigned int d_stat;
|
||||
bool d_flag_frame_sync;
|
||||
|
||||
// symbols
|
||||
std::deque<double> d_symbol_history;
|
||||
std::deque<int> d_correlation_length_ms_history;
|
||||
double d_symbol_accumulator;
|
||||
short int d_symbol_accumulator_counter;
|
||||
|
||||
@ -132,16 +131,10 @@ private:
|
||||
Gnss_Satellite d_satellite;
|
||||
int d_channel;
|
||||
|
||||
//std::deque<double> d_prn_start_sample_history;
|
||||
|
||||
double d_preamble_time_seconds;
|
||||
|
||||
double d_TOW_at_Preamble;
|
||||
double d_TOW_at_current_symbol;
|
||||
std::deque<double> d_symbol_TOW_queue_s;
|
||||
// Doppler and Phase accumulator queue for interpolation in Observables
|
||||
std::deque<double> d_carrier_doppler_queue_hz;
|
||||
std::deque<double> d_acc_carrier_phase_queue_rads;
|
||||
|
||||
double Prn_timestamp_at_preamble_ms;
|
||||
bool flag_TOW_set;
|
||||
|
@ -63,6 +63,8 @@ gps_l2_m_telemetry_decoder_cc::gps_l2_m_telemetry_decoder_cc(
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry Bit transition synchronization port out
|
||||
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||
|
@ -63,6 +63,8 @@ sbas_l1_telemetry_decoder_cc::sbas_l1_telemetry_decoder_cc(
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry Bit transition synchronization port out
|
||||
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||
|
@ -60,7 +60,9 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
||||
std::string dump_filename;
|
||||
std::string default_item_type = "gr_complex";
|
||||
float pll_bw_hz;
|
||||
float pll_bw_narrow_hz;
|
||||
float dll_bw_hz;
|
||||
float dll_bw_narrow_hz;
|
||||
float early_late_space_chips;
|
||||
item_type_ = configuration->property(role + ".item_type", default_item_type);
|
||||
//vector_length = configuration->property(role + ".vector_length", 2048);
|
||||
@ -69,6 +71,11 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
||||
dump = configuration->property(role + ".dump", false);
|
||||
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
||||
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
|
||||
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 20.0);
|
||||
dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 2.0);
|
||||
int extend_correlation_ms;
|
||||
extend_correlation_ms = configuration->property(role + ".extend_correlation_ms", 1);
|
||||
|
||||
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
||||
std::string default_dump_filename = "./track_ch";
|
||||
dump_filename = configuration->property(role + ".dump_filename",
|
||||
@ -88,6 +95,9 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
||||
dump_filename,
|
||||
pll_bw_hz,
|
||||
dll_bw_hz,
|
||||
pll_bw_narrow_hz,
|
||||
dll_bw_narrow_hz,
|
||||
extend_correlation_ms,
|
||||
early_late_space_chips);
|
||||
DLOG(INFO) << "tracking(" << tracking_cc->unique_id() << ")";
|
||||
}else if(item_type_.compare("cshort") == 0)
|
||||
@ -102,6 +112,8 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
||||
dump_filename,
|
||||
pll_bw_hz,
|
||||
dll_bw_hz,
|
||||
pll_bw_narrow_hz,
|
||||
dll_bw_narrow_hz,
|
||||
early_late_space_chips);
|
||||
DLOG(INFO) << "tracking(" << tracking_sc->unique_id() << ")";
|
||||
}else
|
||||
|
@ -105,6 +105,8 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
||||
gr::block("galileo_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
this->set_relative_rate(1.0/vector_length);
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
|
@ -108,6 +108,9 @@ Galileo_E1_Tcp_Connector_Tracking_cc::Galileo_E1_Tcp_Connector_Tracking_cc(
|
||||
gr::block("Galileo_E1_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
|
||||
this->set_relative_rate(1.0/vector_length);
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
|
@ -108,6 +108,9 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
||||
gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
|
||||
this->set_relative_rate(1.0/vector_length);
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
|
@ -105,6 +105,8 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
|
||||
gr::block("Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -290,16 +292,6 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_code()
|
||||
memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
|
||||
memcpy(d_late_code,&d_early_code[early_late_spc_samples*2],d_current_prn_length_samples* sizeof(gr_complex));
|
||||
|
||||
// for (int i=0; i<d_current_prn_length_samples; i++)
|
||||
// {
|
||||
// associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
|
||||
// d_early_code[i] = d_ca_code[associated_chip_index];
|
||||
// associated_chip_index = 1 + round(fmod(tcode_chips, code_length_chips));
|
||||
// d_prompt_code[i] = d_ca_code[associated_chip_index];
|
||||
// associated_chip_index = 1 + round(fmod(tcode_chips + d_early_late_spc_chips, code_length_chips));
|
||||
// d_late_code[i] = d_ca_code[associated_chip_index];
|
||||
// tcode_chips = tcode_chips + code_phase_step_chips;
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
@ -555,6 +547,8 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_tracking = true;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
@ -583,6 +577,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
|
||||
d_acquisition_gnss_synchro->Flag_valid_pseudorange = false;
|
||||
d_acquisition_gnss_synchro->Flag_valid_symbol_output = false;
|
||||
*out[0] = *d_acquisition_gnss_synchro;
|
||||
}
|
||||
|
||||
|
@ -34,7 +34,9 @@
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <pmt/pmt.h>
|
||||
#include <volk/volk.h>
|
||||
#include <glog/logging.h>
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
@ -65,10 +67,13 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_cc(
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_c_aid_tracking_cc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_cc(if_freq,
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz,pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
@ -82,6 +87,17 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::forecast (int noutput_items,
|
||||
}
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index(pmt::pmt_t msg)
|
||||
{
|
||||
//pmt::print(msg);
|
||||
DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)<< std::endl;
|
||||
if (d_enable_extended_integration==false) //avoid re-setting preamble indicator
|
||||
{
|
||||
d_preamble_timestamp_s=pmt::to_double(msg);
|
||||
d_enable_extended_integration=true;
|
||||
d_preamble_synchronized=false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
@ -93,10 +109,20 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips) :
|
||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
|
||||
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
|
||||
boost::bind(&gps_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index, this, _1));
|
||||
|
||||
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -107,8 +133,13 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
||||
d_pll_bw_hz=pll_bw_hz;
|
||||
d_dll_bw_hz=dll_bw_hz;
|
||||
d_pll_bw_narrow_hz=pll_bw_narrow_hz;
|
||||
d_dll_bw_narrow_hz=dll_bw_narrow_hz;
|
||||
d_extend_correlation_ms = extend_correlation_ms;
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz,2);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
@ -141,7 +172,8 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
d_rem_carrier_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
d_sample_counter = 0; //(from trk to tlm)
|
||||
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
@ -168,6 +200,7 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_code_error_filt_chips_Ti = 0.0;
|
||||
d_acc_carrier_phase_cycles = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
|
||||
@ -175,6 +208,8 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_code_phase_step_chips = 0.0;
|
||||
d_carrier_phase_step_rad = 0.0;
|
||||
d_enable_extended_integration=false;
|
||||
d_preamble_synchronized=false;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
@ -258,7 +293,8 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking()
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
d_enable_extended_integration=false;
|
||||
d_preamble_synchronized=false;
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
@ -290,13 +326,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
// process vars
|
||||
double code_error_chips_Ti = 0.0;
|
||||
double code_error_filt_chips = 0.0;
|
||||
double code_error_filt_secs_Ti = 0.0;
|
||||
double CURRENT_INTEGRATION_TIME_S;
|
||||
double CORRECTED_INTEGRATION_TIME_S;
|
||||
double CURRENT_INTEGRATION_TIME_S = 0.0;
|
||||
double CORRECTED_INTEGRATION_TIME_S = 0.0;
|
||||
double dll_code_error_secs_Ti = 0.0;
|
||||
double carr_phase_error_secs_Ti = 0.0;
|
||||
double old_d_rem_code_phase_samples;
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
@ -313,6 +346,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
d_pull_in = false;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||
return 1;
|
||||
@ -326,115 +361,228 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
|
||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
||||
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
// ####### coherent intergration extension
|
||||
// keep the last symbols
|
||||
d_E_history.push_back(d_correlator_outs[0]); // save early output
|
||||
d_P_history.push_back(d_correlator_outs[1]); // save prompt output
|
||||
d_L_history.push_back(d_correlator_outs[2]); // save late output
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
||||
// Carrier discriminator filter
|
||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||
// Input [s/Ti] -> output [Hz]
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
// code Doppler frequency update
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
if (static_cast<int>(d_P_history.size())>d_extend_correlation_ms)
|
||||
{
|
||||
d_E_history.pop_front();
|
||||
d_P_history.pop_front();
|
||||
d_L_history.pop_front();
|
||||
}
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
||||
// DLL code error estimation [s/Ti]
|
||||
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
|
||||
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
|
||||
bool enable_dll_pll;
|
||||
if (d_enable_extended_integration==true)
|
||||
{
|
||||
long int symbol_diff=round(1000.0*((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in)-d_preamble_timestamp_s));
|
||||
if (symbol_diff>0 and symbol_diff % d_extend_correlation_ms == 0)
|
||||
{
|
||||
// compute coherent integration and enable tracking loop
|
||||
// perform coherent integration using correlator output history
|
||||
//std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
|
||||
d_correlator_outs[0]=gr_complex(0.0,0.0);
|
||||
d_correlator_outs[1]=gr_complex(0.0,0.0);
|
||||
d_correlator_outs[2]=gr_complex(0.0,0.0);
|
||||
for (int n=0;n<d_extend_correlation_ms;n++)
|
||||
{
|
||||
d_correlator_outs[0]+=d_E_history.at(n);
|
||||
d_correlator_outs[1]+=d_P_history.at(n);
|
||||
d_correlator_outs[2]+=d_L_history.at(n);
|
||||
}
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||
if (d_preamble_synchronized==false)
|
||||
{
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz,2);
|
||||
d_preamble_synchronized=true;
|
||||
std::cout<<"Enabled extended correlator for CH "<< d_channel <<" : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<<" dll_narrow_bw="<<d_dll_bw_narrow_hz<<" pll_narrow_bw="<<d_pll_bw_narrow_hz<<std::endl;
|
||||
|
||||
d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
|
||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
|
||||
}
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms)*GPS_L1_CA_CODE_PERIOD;
|
||||
enable_dll_pll=true;
|
||||
|
||||
// UPDATE REMNANT CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||
// UPDATE CARRIER PHASE ACCUULATOR
|
||||
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
|
||||
}else{
|
||||
if(d_preamble_synchronized==true)
|
||||
{
|
||||
// continue extended coherent correlation
|
||||
//remnant carrier phase [rads]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GPS_TWO_PI);
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
|
||||
double T_chip_seconds = 1 / d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
int K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples=K_prn_samples-T_prn_samples;
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
d_rem_code_phase_samples= d_rem_code_phase_samples - K_T_prn_error_samples;
|
||||
d_rem_code_phase_integer_samples=round(d_rem_code_phase_samples);
|
||||
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
|
||||
d_rem_code_phase_samples=d_rem_code_phase_samples-d_rem_code_phase_integer_samples;
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
||||
if (d_queue != gr::msg_queue::sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
|
||||
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + old_d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
// disable tracking loop and inform telemetry decoder
|
||||
enable_dll_pll=false;
|
||||
}else{
|
||||
// perform basic (1ms) correlation
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
enable_dll_pll=true;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
enable_dll_pll=true;
|
||||
}
|
||||
|
||||
|
||||
if (enable_dll_pll==true)
|
||||
{
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
||||
// Carrier discriminator filter
|
||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||
// Input [s/Ti] -> output [Hz]
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
// code Doppler frequency update
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
||||
// Code discriminator filter
|
||||
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s*CURRENT_INTEGRATION_TIME_S;
|
||||
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti/d_code_freq_chips; // [s/Ti]
|
||||
// DLL code error estimation [s/Ti]
|
||||
// PLL to DLL assistance is disable due to the use of a fractional resampler that allows the correction of the code Doppler effect.
|
||||
dll_code_error_secs_Ti = - code_error_filt_secs_Ti;// + d_pll_to_dll_assist_secs_Ti;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_prn_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples=K_prn_samples-T_prn_samples;
|
||||
|
||||
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
|
||||
d_rem_code_phase_samples= d_rem_code_phase_samples - K_T_prn_error_samples -dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||
d_rem_code_phase_integer_samples=round(d_rem_code_phase_samples);
|
||||
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
|
||||
d_rem_code_phase_samples=d_rem_code_phase_samples-d_rem_code_phase_integer_samples;
|
||||
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||
// UPDATE CARRIER PHASE ACCUULATOR
|
||||
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
||||
if (d_queue != gr::msg_queue::sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + old_d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
if (d_preamble_synchronized==true)
|
||||
{
|
||||
current_synchro_data.correlation_length_ms=d_extend_correlation_ms;
|
||||
}else{
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
}
|
||||
*out[0] = current_synchro_data;
|
||||
}else{
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;// todo: project the carrier doppler
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
/*!
|
||||
@ -447,7 +595,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
||||
}
|
||||
@ -457,7 +605,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
||||
}
|
||||
}
|
||||
@ -488,6 +636,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
@ -523,19 +672,19 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips_Ti), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
tmp_double = d_code_error_chips_Ti*CURRENT_INTEGRATION_TIME_S;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
|
@ -39,13 +39,16 @@
|
||||
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <deque>
|
||||
#include <string>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <pmt/pmt.h>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_FLL_PLL_filter.h"
|
||||
#include "tracking_loop_filter.h"
|
||||
#include "cpu_multicorrelator.h"
|
||||
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_cc;
|
||||
@ -62,6 +65,9 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_cc(long if_freq,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
@ -94,6 +100,9 @@ private:
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_cc(long if_freq,
|
||||
@ -104,6 +113,9 @@ private:
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
// tracking configuration vars
|
||||
@ -130,8 +142,10 @@ private:
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_code_phase_chips;
|
||||
double d_rem_carrier_phase_rad;
|
||||
int d_rem_code_phase_integer_samples;
|
||||
|
||||
// PLL and DLL filter library
|
||||
//Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_FLL_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
@ -140,6 +154,10 @@ private:
|
||||
double d_acq_carrier_doppler_hz;
|
||||
|
||||
// tracking vars
|
||||
float d_dll_bw_hz;
|
||||
float d_pll_bw_hz;
|
||||
float d_dll_bw_narrow_hz;
|
||||
float d_pll_bw_narrow_hz;
|
||||
double d_code_freq_chips;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
@ -147,6 +165,21 @@ private:
|
||||
double d_acc_carrier_phase_cycles;
|
||||
double d_code_phase_samples;
|
||||
double d_pll_to_dll_assist_secs_Ti;
|
||||
double d_code_error_chips_Ti;
|
||||
double d_code_error_filt_chips_s;
|
||||
double d_code_error_filt_chips_Ti;
|
||||
double d_carr_phase_error_secs_Ti;
|
||||
|
||||
// symbol history to detect bit transition
|
||||
std::deque<gr_complex> d_E_history;
|
||||
std::deque<gr_complex> d_P_history;
|
||||
std::deque<gr_complex> d_L_history;
|
||||
double d_preamble_timestamp_s;
|
||||
int d_extend_correlation_ms;
|
||||
bool d_enable_extended_integration;
|
||||
bool d_preamble_synchronized;
|
||||
int d_correlation_symbol_counter;
|
||||
void msg_handler_preamble_index(pmt::pmt_t msg);
|
||||
|
||||
//Integration period in samples
|
||||
int d_correlation_length_samples;
|
||||
|
@ -66,10 +66,12 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_sc(
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_c_aid_tracking_sc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_sc(if_freq,
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
@ -94,10 +96,14 @@ gps_l1_ca_dll_pll_c_aid_tracking_sc::gps_l1_ca_dll_pll_c_aid_tracking_sc(
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
float early_late_space_chips) :
|
||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -108,6 +114,10 @@ gps_l1_ca_dll_pll_c_aid_tracking_sc::gps_l1_ca_dll_pll_c_aid_tracking_sc(
|
||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_pll_bw_hz=pll_bw_hz;
|
||||
d_dll_bw_hz=dll_bw_hz;
|
||||
d_pll_bw_narrow_hz=pll_bw_narrow_hz;
|
||||
d_dll_bw_narrow_hz=dll_bw_narrow_hz;
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
||||
|
||||
@ -330,17 +340,9 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
|
||||
//volk_gnsssdr_32fc_convert_16ic(d_in_16sc,in,d_correlation_length_samples);
|
||||
//std::cout << std::fixed << std::setw( 11 ) << std::setprecision( 6 );
|
||||
//std::cout<<"in="<<in[0]<<std::endl;
|
||||
|
||||
multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc,in);
|
||||
multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
||||
|
||||
//std::cout<<"E 16sc="<<d_correlator_outs_16sc[0]<<std::endl;
|
||||
//std::cout<<"P 16sc="<<d_correlator_outs_16sc[1]<<std::endl;
|
||||
//std::cout<<"L 16sc="<<d_correlator_outs_16sc[2]<<std::endl;
|
||||
|
||||
//std::cout<<std::endl;
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
@ -450,6 +452,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
@ -504,6 +508,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
|
@ -67,6 +67,8 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_sc(long if_freq,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
@ -99,6 +101,8 @@ private:
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_sc(long if_freq,
|
||||
@ -109,6 +113,8 @@ private:
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
// tracking configuration vars
|
||||
@ -148,6 +154,10 @@ private:
|
||||
double d_acq_carrier_doppler_hz;
|
||||
|
||||
// tracking vars
|
||||
float d_dll_bw_hz;
|
||||
float d_pll_bw_hz;
|
||||
float d_dll_bw_narrow_hz;
|
||||
float d_pll_bw_narrow_hz;
|
||||
double d_code_freq_chips;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
|
@ -104,6 +104,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Pll_Tracking_cc(
|
||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -309,8 +311,6 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
|
||||
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
|
||||
phase_rad_i += phase_step_rad_i;
|
||||
}
|
||||
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
|
||||
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
||||
}
|
||||
|
||||
|
||||
@ -362,11 +362,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
*out[0] = current_synchro_data;
|
||||
@ -493,11 +490,6 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
@ -510,6 +502,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
@ -563,6 +557,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
@ -616,7 +611,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
@ -651,7 +646,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
||||
}
|
||||
|
@ -99,6 +99,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -451,6 +453,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
@ -505,6 +509,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
|
@ -1,606 +0,0 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc
|
||||
* \brief Implementation of a code DLL + carrier PLL tracking block, GPU ACCELERATED
|
||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_dll_pll_tracking_gpu_cc.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <volk/volk.h> //volk_alignement
|
||||
// includes
|
||||
#include <cuda_profiler_api.h>
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Include in definition header file
|
||||
*/
|
||||
#define CN0_ESTIMATION_SAMPLES 20
|
||||
#define MINIMUM_VALID_CN0 25
|
||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l1_ca_dll_pll_tracking_gpu_cc_sptr
|
||||
gps_l1_ca_dll_pll_make_tracking_gpu_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(if_freq,
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast (int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
|
||||
|
||||
|
||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips) :
|
||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Set GPU flags
|
||||
cudaSetDeviceFlags(cudaDeviceMapHost);
|
||||
//allocate host memory
|
||||
//pinned memory mode - use special function to get OS-pinned memory
|
||||
int N_CORRELATORS = 3;
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// Get space for the resampled early / prompt / late local replicas
|
||||
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// correlator outputs (scalar)
|
||||
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
|
||||
|
||||
//map to EPL pointers
|
||||
d_Early = &d_corr_outs_gpu[0];
|
||||
d_Prompt = &d_corr_outs_gpu[1];
|
||||
d_Late = &d_corr_outs_gpu[2];
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
multicorrelator_gpu = new cuda_multicorrelator();
|
||||
//local code resampler on GPU
|
||||
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
|
||||
multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
|
||||
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
d_enable_tracking = false;
|
||||
d_pull_in = false;
|
||||
d_last_seg = 0;
|
||||
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
||||
|
||||
systemName["G"] = std::string("GPS");
|
||||
systemName["S"] = std::string("SBAS");
|
||||
|
||||
|
||||
set_relative_rate(1.0/((double)d_vector_length*2));
|
||||
|
||||
d_channel_internal_queue = 0;
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
d_acc_code_phase_secs = 0.0;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1.0/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
||||
|
||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
d_acc_code_phase_secs = 0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0,1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
cudaFreeHost(in_gpu);
|
||||
cudaFreeHost(d_corr_outs_gpu);
|
||||
cudaFreeHost(d_local_code_shift_chips);
|
||||
cudaFreeHost(d_ca_code);
|
||||
multicorrelator_gpu->free_cuda();
|
||||
delete(multicorrelator_gpu);
|
||||
delete[] d_Prompt_buffer;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
double carr_error_hz=0.0;
|
||||
double carr_error_filt_hz=0.0;
|
||||
double code_error_chips=0.0;
|
||||
double code_error_filt_chips=0.0;
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0];
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
*out[0] = current_synchro_data;
|
||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
|
||||
// UPDATE NCO COMMAND
|
||||
double phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
//code resampler on GPU (new)
|
||||
double code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
|
||||
std::cout<<"rem_code_phase_chips="<<rem_code_phase_chips<<" d_current_prn_length_samples="<<d_current_prn_length_samples<<std::endl;
|
||||
memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
|
||||
cudaProfilerStart();
|
||||
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda( static_cast<float>(d_rem_carr_phase_rad),
|
||||
static_cast<float>(phase_step_rad),
|
||||
static_cast<float>(code_phase_step_chips),
|
||||
static_cast<float>(rem_code_phase_chips),
|
||||
d_current_prn_length_samples, 3);
|
||||
cudaProfilerStop();
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
||||
if (d_queue != gr::msg_queue::sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// debug: Second counter in channel 0
|
||||
if (d_channel == 0)
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// stream to collect cout calls to improve thread safety
|
||||
std::stringstream tmp_str_stream;
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
|
||||
if (d_channel == 0)
|
||||
{
|
||||
// debug: Second counter in channel 0
|
||||
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
|
||||
std::cout << tmp_str_stream.rdbuf() << std::flush;
|
||||
}
|
||||
}
|
||||
*d_Early = gr_complex(0,0);
|
||||
*d_Prompt = gr_complex(0,0);
|
||||
*d_Late = gr_complex(0,0);
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
if(d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
float tmp_E, tmp_P, tmp_L;
|
||||
float tmp_float;
|
||||
double tmp_double;
|
||||
prompt_I = (*d_Prompt).real();
|
||||
prompt_Q = (*d_Prompt).imag();
|
||||
tmp_E = std::abs<float>(*d_Early);
|
||||
tmp_P = std::abs<float>(*d_Prompt);
|
||||
tmp_L = std::abs<float>(*d_Late);
|
||||
try
|
||||
{
|
||||
|
||||
// EPR
|
||||
d_dump_file.write((char*)&tmp_E, sizeof(float));
|
||||
d_dump_file.write((char*)&tmp_P, sizeof(float));
|
||||
d_dump_file.write((char*)&tmp_L, sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write((char*)&prompt_I, sizeof(float));
|
||||
d_dump_file.write((char*)&prompt_Q, sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
tmp_float = d_acc_carrier_phase_rad;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// carrier and code frequency
|
||||
tmp_float = d_carrier_doppler_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = d_code_freq_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//PLL commands
|
||||
tmp_float = carr_error_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = carr_error_filt_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//DLL commands
|
||||
tmp_float = code_error_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = code_error_filt_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
tmp_float = d_CN0_SNV_dB_Hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = d_carrier_lock_test;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
|
||||
//LOG(INFO)<<"GPS tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -106,6 +106,8 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc(
|
||||
gr::block("Gps_L1_Ca_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -434,7 +436,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
current_synchro_data.CN0_dB_hz = 0.0;
|
||||
current_synchro_data.Flag_valid_tracking = false;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
return 1;
|
||||
@ -547,6 +549,8 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
current_synchro_data.Code_phase_secs = (double)d_code_phase_samples * (1/(float)d_fs_in);
|
||||
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
|
@ -102,7 +102,8 @@ gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
|
||||
float early_late_space_chips) :
|
||||
gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
{ // Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
@ -311,8 +312,6 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_carrier()
|
||||
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
|
||||
phase_rad += phase_step_rad;
|
||||
}
|
||||
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_L2_TWO_PI);
|
||||
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
||||
}
|
||||
|
||||
|
||||
@ -414,7 +413,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
current_synchro_data.CN0_dB_hz = 0.0;
|
||||
current_synchro_data.Flag_valid_tracking = false;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
return 1;
|
||||
@ -499,11 +498,6 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
@ -516,6 +510,8 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_tracking = true;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms=1;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
@ -570,6 +566,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
*d_Late = gr_complex(0,0);
|
||||
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
|
@ -100,21 +100,23 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void cpu_multicorrelator::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
|
||||
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
|
||||
{
|
||||
float local_code_chip_index;
|
||||
int local_code_chip_index;
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
||||
{
|
||||
for (int n = 0; n < correlator_length_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = std::fmod(code_phase_step_chips * static_cast<float>(n) + d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
|
||||
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
for (int n = 0; n < correlator_length_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = floor(code_phase_step_chips*static_cast<float>(n) + d_shifts_chips[current_correlator_tap]- rem_code_phase_chips);
|
||||
local_code_chip_index = local_code_chip_index % d_code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index < 0) local_code_chip_index += d_code_length_chips;
|
||||
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[local_code_chip_index];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -67,21 +67,22 @@
|
||||
*/
|
||||
float cn0_svn_estimator(gr_complex* Prompt_buffer, int length, long fs_in, double code_length)
|
||||
{
|
||||
float SNR = 0;
|
||||
float SNR_dB_Hz = 0;
|
||||
float Psig = 0;
|
||||
float Ptot = 0;
|
||||
double SNR = 0;
|
||||
double SNR_dB_Hz = 0;
|
||||
double Psig = 0;
|
||||
double Ptot = 0;
|
||||
for (int i=0; i<length; i++)
|
||||
{
|
||||
Psig += std::abs(Prompt_buffer[i].real());
|
||||
Ptot += Prompt_buffer[i].imag() * Prompt_buffer[i].imag() + Prompt_buffer[i].real() * Prompt_buffer[i].real();
|
||||
Psig += std::abs(static_cast<double>(Prompt_buffer[i].real()));
|
||||
Ptot += static_cast<double>(Prompt_buffer[i].imag()) * static_cast<double>(Prompt_buffer[i].imag())
|
||||
+ static_cast<double>(Prompt_buffer[i].real()) * static_cast<double>(Prompt_buffer[i].real());
|
||||
}
|
||||
Psig = Psig / (float)length;
|
||||
Psig = Psig / static_cast<double>(length);
|
||||
Psig = Psig * Psig;
|
||||
Ptot = Ptot / (float)length;
|
||||
Ptot = Ptot / static_cast<double>(length);
|
||||
SNR = Psig / (Ptot - Psig);
|
||||
SNR_dB_Hz = 10 * log10(SNR) + 10 * log10(fs_in/2) - 10 * log10((float)code_length);
|
||||
return SNR_dB_Hz;
|
||||
SNR_dB_Hz = 10 * log10(SNR) + 10 * log10(static_cast<double>(fs_in)/2) - 10 * log10(code_length);
|
||||
return static_cast<float>(SNR_dB_Hz);
|
||||
}
|
||||
|
||||
|
||||
|
@ -74,12 +74,15 @@ const int GPS_L1_CA_HISTORY_DEEP = 100;
|
||||
|
||||
#define GPS_PREAMBLE {1, 0, 0, 0, 1, 0, 1, 1}
|
||||
const int GPS_CA_PREAMBLE_LENGTH_BITS = 8;
|
||||
const int GPS_CA_PREAMBLE_LENGTH_SYMBOLS = 160;
|
||||
const int GPS_CA_TELEMETRY_RATE_BITS_SECOND = 50; //!< NAV message bit rate [bits/s]
|
||||
const int GPS_CA_TELEMETRY_RATE_SYMBOLS_SECOND = GPS_CA_TELEMETRY_RATE_BITS_SECOND*20; //!< NAV message bit rate [symbols/s]
|
||||
const int GPS_CA_TELEMETRY_SYMBOLS_PER_BIT = 20;
|
||||
const int GPS_CA_TELEMETRY_RATE_SYMBOLS_SECOND = GPS_CA_TELEMETRY_RATE_BITS_SECOND*GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; //!< NAV message bit rate [symbols/s]
|
||||
const int GPS_WORD_LENGTH = 4; //!< CRC + GPS WORD (-2 -1 0 ... 29) Bits = 4 bytes
|
||||
const int GPS_SUBFRAME_LENGTH = 40; //!< GPS_WORD_LENGTH x 10 = 40 bytes
|
||||
const int GPS_SUBFRAME_BITS = 300; //!< Number of bits per subframe in the NAV message [bits]
|
||||
const int GPS_SUBFRAME_SECONDS = 6; //!< Subframe duration [seconds]
|
||||
const int GPS_SUBFRAME_MS = 6000; //!< Subframe duration [seconds]
|
||||
const int GPS_WORD_BITS = 30; //!< Number of bits per word in the NAV message [bits]
|
||||
|
||||
// GPS NAVIGATION MESSAGE STRUCTURE
|
||||
|
@ -61,6 +61,9 @@ public:
|
||||
double Tracking_timestamp_secs; //!< Set by Tracking processing block
|
||||
bool Flag_valid_tracking;
|
||||
|
||||
bool Flag_valid_symbol_output;
|
||||
int correlation_length_ms; //!< Set by Tracking processing block
|
||||
|
||||
//Telemetry Decoder
|
||||
double Prn_timestamp_ms; //!< Set by Telemetry Decoder processing block
|
||||
double Prn_timestamp_at_preamble_ms; //!< Set by Telemetry Decoder processing block
|
||||
|
Loading…
Reference in New Issue
Block a user