1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-12 19:20:32 +00:00

Merge branch 'next' into arribas_next

Conflicts:
	src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_dll_pll_tracking_cc.cc
This commit is contained in:
Javier 2015-05-06 16:49:11 +02:00
commit 37a346f3f6
48 changed files with 1237 additions and 741 deletions

View File

@ -35,16 +35,23 @@ file(RELATIVE_PATH RELATIVE_CMAKE_CALL ${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRE
# Enable them here or at the command line by doing 'cmake -DENABLE_XXX=ON ../'
########################################################################
option(ENABLE_GN3S "Enable the use of the GN3S dongle as signal source (experimental)" OFF)
option(ENABLE_ARRAY "Enable the use of CTTC's antenna array front-end as signal source (experimental)" OFF)
option(ENABLE_FLEXIBAND "Enable the use of the signal source adater for the Teleorbit Flexiband GNURadio driver" OFF)
# Support of optional RF front-ends
option(ENABLE_OSMOSDR "Enable the use of OsmoSDR and other front-ends (RTL-based dongles, HackRF, bladeRF, etc.) as signal source (experimental)" OFF)
option(ENABLE_OPENCL "Enable building of processing blocks implemented with OpenCL (experimental)" OFF)
option(ENABLE_FLEXIBAND "Enable the use of the signal source adater for the Teleorbit Flexiband GNURadio driver" OFF)
option(ENABLE_ARRAY "Enable the use of CTTC's antenna array front-end as signal source (experimental)" OFF)
option(ENABLE_GN3S "Enable the use of the GN3S dongle as signal source (experimental)" OFF)
# Performance analysis tools
option(ENABLE_GPERFTOOLS "Enable linking to Gperftools libraries (tcmalloc and profiler)" OFF)
option(ENABLE_GPROF "Enable the use of the GNU profiler tool 'gprof'" OFF)
# Acceleration
option(ENABLE_OPENCL "Enable building of processing blocks implemented with OpenCL (experimental)" OFF)
# Building and packaging options
option(ENABLE_GENERIC_ARCH "Builds a portable binary" OFF)
option(ENABLE_PACKAGING "Enable software packaging" OFF)
option(ENABLE_OWN_GLOG "Download glog and link it to gflags" OFF)
if(ENABLE_PACKAGING)
set(ENABLE_GENERIC_ARCH ON)
endif(ENABLE_PACKAGING)
@ -212,13 +219,15 @@ endif(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
#select the release build type by default to get optimization flags
if(NOT CMAKE_BUILD_TYPE)
if(ENABLE_GPERFTOOLS)
set(CMAKE_BUILD_TYPE "RelWithDebInfo")
message(STATUS "Build type not specified: defaulting to RelWithDebInfo.")
else(ENABLE_GPERFTOOLS)
set(CMAKE_BUILD_TYPE "Release")
message(STATUS "Build type not specified: defaulting to Release.")
endif(ENABLE_GPERFTOOLS)
if(ENABLE_GPERFTOOLS OR ENABLE_GPROF)
set(CMAKE_BUILD_TYPE "RelWithDebInfo")
message(STATUS "Build type not specified: defaulting to RelWithDebInfo.")
else(ENABLE_GPERFTOOLS OR ENABLE_GPROF)
set(CMAKE_BUILD_TYPE "Release")
message(STATUS "Build type not specified: defaulting to Release.")
endif(ENABLE_GPERFTOOLS OR ENABLE_GPROF)
else(NOT CMAKE_BUILD_TYPE)
message(STATUS "Build type set to ${CMAKE_BUILD_TYPE}.")
endif(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE ${CMAKE_BUILD_TYPE} CACHE STRING "")
@ -394,7 +403,7 @@ set(VOLK_GNSSSDR_BUILD_COMMAND "make")
if(OS_IS_MACOSX)
set(USE_MACPORTS_PYTHON "-DPYTHON_EXECUTABLE=/opt/local/bin/python")
if(CMAKE_GENERATOR STREQUAL Xcode)
set(VOLK_GNSSSDR_BUILD_COMMAND "xcodebuild" "-configuration" "Debug" "-target")
set(VOLK_GNSSSDR_BUILD_COMMAND "xcodebuild" "-configuration" "Debug" "-target")
endif(CMAKE_GENERATOR STREQUAL Xcode)
endif(OS_IS_MACOSX)
if(NOT VOLK_GNSSSDR_FOUND)
@ -440,7 +449,7 @@ if (NOT GFlags_FOUND)
message (STATUS " gflags library has not been found.")
message (STATUS " gflags will be downloaded and built automatically ")
message (STATUS " when doing 'make'. ")
ExternalProject_Add(
gflags-${gflags_RELEASE}
PREFIX ${CMAKE_CURRENT_BINARY_DIR}/gflags-${gflags_RELEASE}
@ -696,8 +705,8 @@ if(NOT ARMADILLO_FOUND)
message(STATUS " Armadillo will be downloaded and built automatically ")
message(STATUS " when doing 'make'. ")
set(armadillo_RELEASE 4.650.4)
set(armadillo_MD5 "e575dc01cf60e290a467c7c6d3171ef3")
set(armadillo_RELEASE 5.100.1)
set(armadillo_MD5 "6926fbf81bde99d777e3d09d034b308a")
ExternalProject_Add(
armadillo-${armadillo_RELEASE}
@ -1017,6 +1026,15 @@ if(ENABLE_GPERFTOOLS)
endif(GPERFTOOLS_FOUND)
endif(ENABLE_GPERFTOOLS)
if(ENABLE_GPROF)
if(CMAKE_COMPILER_IS_GNUCXX)
set(MY_CXX_FLAGS "${MY_CXX_FLAGS} -pg")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pg")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -pg")
endif(CMAKE_COMPILER_IS_GNUCXX)
endif(ENABLE_GPROF)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${MY_CXX_FLAGS}")
if(OS_IS_LINUX)

View File

@ -16,18 +16,18 @@ This section describes how to set up the compilation environment in GNU/Linux or
GNU/Linux
----------
* Tested distributions: Ubuntu 14.04 LTS and 14.10, Debian 8.0 "jessie".
* Tested distributions: Ubuntu 14.04 LTS, 14.10 and 15.04, Debian 8.0 "jessie", Linaro 15.03
* Known to work but not continually tested: Fedora 19 and 20, and openSUSE 13.1
* Supported microprocessor architectures:
* i386: Intel x86 instruction set (32-bit microprocessors).
* amd64: also known as x86-64, the 64-bit version of the x86 instruction set, originally created by AMD and implemented by AMD, Intel, VIA and others.
* armel: ARM embedded ABI, supported on ARM v4t and higher (for Debian only).
* armhf: ARM hard float, ARMv7 + VFP3-D16 floating-point hardware extension + Thumb-2 instruction set and above (for Debian only).
* arm64: ARM 64 bits or ARMv8 (for Debian only).
* armel: ARM embedded ABI, supported on ARM v4t and higher.
* armhf: ARM hard float, ARMv7 + VFP3-D16 floating-point hardware extension + Thumb-2 instruction set and above.
* arm64: ARM 64 bits or ARMv8.
Older distribution releases might work as well, but you will need GCC 4.7 or newer.
Before building GNSS-SDR, you need to install all the required dependencies. If you are using Debian 8 or Ubuntu 14.10, this can be done by copying and pasting the following line in a terminal:
Before building GNSS-SDR, you need to install all the required dependencies. If you are using Debian 8, Ubuntu 14.10 or above, this can be done by copying and pasting the following line in a terminal:
~~~~~~
$ sudo apt-get install build-essential cmake git libboost-dev libboost-date-time-dev \
@ -39,7 +39,7 @@ $ sudo apt-get install build-essential cmake git libboost-dev libboost-date-time
Once you have installed these packages, you can jump directly to [how to download the source code and build GNSS-SDR](#download-and-build-linux). Alternatively, if you need to manually install those libraries, please keep reading.
Note for Ubuntu 14.04 LTS "trusty" users: you will need to build from source and install GNU Radio manually, as explained below, since GNSS-SDR requires gnuradio-dev >= 3.7.3, and Ubuntu 14.04 came with 3.7.2.
Note for Ubuntu 14.04 LTS "trusty" users: you will need to build from source and install GNU Radio manually, as explained below, since GNSS-SDR requires gnuradio-dev >= 3.7.3, and Ubuntu 14.04 came with 3.7.2. Install all the packages above BUT EXCEPT ```libuhd-dev```, ```gnuradio-dev``` and ```gr-osmosdr``` (and remove them if they are already installed in your machine), and install those dependencies using PyBOMBS.
### Manual installation of GNU Radio
@ -94,9 +94,9 @@ In case you do not want to use PyBOMBS and prefer to build and install GNU Radio
$ sudo apt-get install libopenblas-dev liblapack-dev gfortran # For Debian/Ubuntu/LinuxMint
$ sudo yum install lapack-devel blas-devel gcc-fortran # For Fedora/CentOS/RHEL
$ sudo zypper install lapack-devel blas-devel gcc-fortran # For OpenSUSE
$ wget http://sourceforge.net/projects/arma/files/armadillo-4.650.4.tar.gz
$ tar xvfz armadillo-4.650.4.tar.gz
$ cd armadillo-4.650.4
$ wget http://sourceforge.net/projects/arma/files/armadillo-5.100.1.tar.gz
$ tar xvfz armadillo-5.100.1.tar.gz
$ cd armadillo-5.100.1
$ cmake .
$ make
$ sudo make install

View File

@ -27,6 +27,8 @@ FIND_LIBRARY(
${GNURADIO_INSTALL_PREFIX}/lib
)
set(VOLK_VERSION ${PC_VOLK_VERSION})
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(VOLK DEFAULT_MSG VOLK_LIBRARIES VOLK_INCLUDE_DIRS)
MARK_AS_ADVANCED(VOLK_LIBRARIES VOLK_INCLUDE_DIRS)
MARK_AS_ADVANCED(VOLK_LIBRARIES VOLK_INCLUDE_DIRS VOLK_VERSION)

View File

@ -0,0 +1,308 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
GNSS-SDR.internal_fs_hz=1999898
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=false
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] [Osmosdr_Signal_Source]
SignalSource.implementation=Osmosdr_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/geo/pmt4.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in [Hz]
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
SignalSource.sampling_frequency=2000000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#gain: Front-end overall gain Gain in [dB]
SignalSource.gain=40
;#rf_gain: Front-end RF stage gain in [dB]
SignalSource.rf_gain=40
;#rf_gain: Front-end IF stage gain in [dB]
SignalSource.if_gain=30
;#AGC_enabled: Front-end AGC enabled or disabled
SignalSource.AGC_enabled = false
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#Send optional arguments to the OsmoSdr Gnuradio block
;#Arguments are comma-delimited. See http://sdr.osmocom.org/trac/wiki/GrOsmoSDR for documentation.
SignalSource.osmosdr_args=rtl_tcp,offset_tune=1
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter.sampling_frequency=1999898
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter.IF=80558
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=4
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
Channel0.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#threshold: Acquisition threshold
Acquisition_GPS.threshold=0.015
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_min=-10000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;#maximum dwells
Acquisition_GPS.max_dwells=15
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false
;Acquisition0.repeat_satellite = false
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] [GPS_L1_CA_DLL_PLL_Optim_Tracking]
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS.dump_filename=./tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_GPS.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_GPS.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=true
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -340,7 +340,7 @@ int hybrid_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
std::cout << "Dilution of Precision at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " UTC using "<< d_ls_pvt->d_valid_observations<<" observations is HDOP = " << d_ls_pvt->d_HDOP << " VDOP = "
<< d_ls_pvt->d_VDOP <<" TDOP = " << d_ls_pvt->d_TDOP
<< " GDOP = " << d_ls_pvt->d_GDOP;
<< " GDOP = " << d_ls_pvt->d_GDOP << std::endl;
}
// MULTIPLEXED FILE RECORDING - Record results to file

View File

@ -308,7 +308,7 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
//end debug
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
@ -345,7 +345,7 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
LOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)

View File

@ -289,7 +289,7 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
valid_obs++;
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
@ -318,11 +318,11 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
if (valid_obs >= 4)
{
arma::vec mypos;
LOG(INFO) << "satpos=" << satpos;
LOG(INFO) << "obs=" << obs;
LOG(INFO) << "W=" << W;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs=" << obs;
DLOG(INFO) << "W=" << W;
mypos = leastSquarePos(satpos, obs, W);
LOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos;
DLOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos;
gps_l1_ca_ls_pvt::cart2geo(mypos(0), mypos(1), mypos(2), 4);
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
if (d_height_m > 50000)

View File

@ -318,7 +318,7 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
//end debug
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
@ -369,7 +369,7 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
valid_obs++;
valid_obs_GPS_counter++;
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
@ -414,7 +414,7 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
LOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)

View File

@ -356,14 +356,14 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
}
// 5. Update the Doppler estimation in Hz
if (abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz) < 1000)
if (std::abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz) < 1000)
{
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(fftFreqBins[tmp_index_freq]);
//std::cout<<"FFT maximum present at "<<fftFreqBins[tmp_index_freq]<<" [Hz]"<<std::endl;
}
else
{
DLOG(INFO) << "Abs(Grid Doppler - FFT Doppler)=" << abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz);
DLOG(INFO) << "Abs(Grid Doppler - FFT Doppler)=" << std::abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz);
DLOG(INFO) << "Error estimating fine frequency Doppler";
//debug log
//

View File

@ -32,8 +32,8 @@ set(GNSS_SPLIBS_SOURCES
short_x2_to_cshort.cc
complex_float_to_complex_byte.cc
)
if(OPENCL_FOUND)
set(GNSS_SPLIBS_SOURCES ${GNSS_SPLIBS_SOURCES}
fft_execute.cc # Needs OpenCL
@ -70,12 +70,12 @@ add_library(gnss_sp_libs ${GNSS_SPLIBS_SOURCES} ${GNSS_SPLIBS_HEADERS})
source_group(Headers FILES ${GNSS_SPLIBS_HEADERS})
target_link_libraries(gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES}
${VOLK_LIBRARIES}
${VOLK_GNSSSDR_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${GNURADIO_FILTER_LIBRARIES}
${OPT_LIBRARIES}
${VOLK_LIBRARIES} ${ORC_LIBRARIES}
${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${GNURADIO_FILTER_LIBRARIES}
${OPT_LIBRARIES}
gnss_rx
)

View File

@ -32,43 +32,26 @@
*/
#include "gnss_signal_processing.h"
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <gnuradio/fxpt_nco.h>
auto auxCeil2 = [](float x){ return static_cast<int>(static_cast<long>((x)+1)); };
void complex_exp_gen(std::complex<float>* _dest, double _f, double _fs, unsigned int _samps)
{
int phase_i = 0;
int phase_step_i;
float phase_step_f = (float)((GPS_TWO_PI * _f) / _fs);
phase_step_i = gr::fxpt::float_to_fixed(phase_step_f);
float sin_f, cos_f;
for(unsigned int i = 0; i < _samps; i++)
{
gr::fxpt::sincos(phase_i, &sin_f, &cos_f);
_dest[i] = std::complex<float>(cos_f, sin_f);
phase_i += phase_step_i;
}
gr::fxpt_nco d_nco;
d_nco.set_freq((GPS_TWO_PI * _f) / _fs);
d_nco.sincos(_dest, _samps, 1);
}
void complex_exp_gen_conj(std::complex<float>* _dest, double _f, double _fs, unsigned int _samps)
{
int phase_i = 0;
int phase_step_i;
float phase_step_f = (float)((GPS_TWO_PI * _f) / _fs);
phase_step_i = gr::fxpt::float_to_fixed(phase_step_f);
float sin_f, cos_f;
for(unsigned int i = 0; i < _samps; i++)
{
gr::fxpt::sincos(phase_i, &sin_f, &cos_f);
_dest[i] = std::complex<float>(cos_f, -sin_f);
phase_i += phase_step_i;
}
gr::fxpt_nco d_nco;
d_nco.set_freq(-(GPS_TWO_PI * _f) / _fs);
d_nco.sincos(_dest, _samps, 1);
}
void hex_to_binary_converter(int * _dest, char _from)
{
switch(_from)
@ -177,6 +160,7 @@ void resampler(std::complex<float>* _from, std::complex<float>* _dest, float _fs
float _fs_out, unsigned int _length_in, unsigned int _length_out)
{
unsigned int _codeValueIndex;
float aux;
//--- Find time constants --------------------------------------------------
const float _t_in = 1 / _fs_in; // Incoming sampling period in sec
const float _t_out = 1 / _fs_out; // Out sampling period in sec
@ -184,7 +168,10 @@ void resampler(std::complex<float>* _from, std::complex<float>* _dest, float _fs
{
//=== Digitizing =======================================================
//--- compute index array to read sampled values -------------------------
_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
//_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
aux = (_t_out * (i + 1)) / _t_in;
_codeValueIndex = auxCeil2(aux) - 1;
//if repeat the chip -> upsample by nearest neighborhood interpolation
_dest[i] = _from[_codeValueIndex];
}

View File

@ -34,19 +34,24 @@
#include <stdlib.h>
#include <cmath>
auto auxCeil = [](float x){ return static_cast<int>(static_cast<long>((x)+1)); };
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift)
{
unsigned int G1[1023];
unsigned int G2[1023];
unsigned int G1_register[10], G2_register[10];
unsigned int feedback1, feedback2;
const unsigned int _code_length = 1023;
bool G1[_code_length];
bool G2[_code_length];
bool G1_register[10], G2_register[10];
bool feedback1, feedback2;
bool aux;
unsigned int lcv, lcv2;
unsigned int delay;
signed int prn_idx;
/* G2 Delays as defined in GPS-ISD-200D */
signed int delays[51] = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254 ,255, 256, 257, 258, 469, 470, 471, 472,
const signed int delays[51] = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254 ,255, 256, 257, 258, 469, 470, 471, 472,
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/,
145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762,
355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/};
@ -59,7 +64,7 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
}
else
{
prn_idx = _prn-1;
prn_idx = _prn - 1;
}
/* A simple error check */
@ -73,7 +78,7 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
}
/* Generate G1 & G2 Register */
for(lcv = 0; lcv < 1023; lcv++)
for(lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[0];
@ -92,23 +97,29 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
}
/* Set the delay */
delay = 1023 - delays[prn_idx];
delay = _code_length - delays[prn_idx];
delay += _chip_shift;
delay %= 1023;
delay %= _code_length;
/* Generate PRN from G1 and G2 Registers */
for(lcv = 0; lcv < 1023; lcv++)
for(lcv = 0; lcv < _code_length; lcv++)
{
_dest[lcv] = std::complex<float>(G1[(lcv + _chip_shift)%1023]^G2[delay], 0);
if(_dest[lcv].real() == 0.0) //javi
aux = G1[(lcv + _chip_shift) % _code_length]^G2[delay];
if(aux == true)
{
_dest[lcv].real(-1.0);
_dest[lcv] = std::complex<float>(1, 0);
}
else
{
_dest[lcv] = std::complex<float>(-1, 0);
}
delay++;
delay %= 1023;
delay %= _code_length;
}
}
/*
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
*/
@ -119,6 +130,7 @@ void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int
signed int _samplesPerCode, _codeValueIndex;
float _ts;
float _tc;
float aux;
const signed int _codeFreqBasis = 1023000; //Hz
const signed int _codeLength = 1023;
@ -139,7 +151,9 @@ void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int
// number of samples per millisecond (because one C/A code period is one
// millisecond).
_codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil( aux ) - 1;
//--- Make the digitized version of the C/A code -----------------------
// The "upsampled" code is made by selecting values form the CA code
@ -157,6 +171,3 @@ void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int
}
}

View File

@ -18,7 +18,7 @@
*/
#include "volk_gnsssdr/volk_gnsssdr_malloc.h"
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
@ -27,29 +27,6 @@
* see: http://linux.die.net/man/3/aligned_alloc
*/
// Disabling use of aligned_alloc. This function requires that size be
// a multiple of alignment, which is too restrictive for many uses of
// VOLK.
//// If we are using C11 standard, use the aligned_alloc
//#ifdef _ISOC11_SOURCE
//
//void *volk_gnsssdr_malloc(size_t size, size_t alignment)
//{
// void *ptr = aligned_alloc(alignment, size);
// if(ptr == NULL) {
// fprintf(stderr, "VOLK: Error allocating memory (aligned_alloc)\n");
// }
// return ptr;
//}
//
//void volk_gnsssdr_free(void *ptr)
//{
// free(ptr);
//}
//
//#else // _ISOC11_SOURCE
// Otherwise, test if we are a POSIX or X/Open system
// This only has a restriction that alignment be a power of 2and a
// multiple of sizeof(void *).
@ -59,11 +36,11 @@ void *volk_gnsssdr_malloc(size_t size, size_t alignment)
{
void *ptr;
// quoting posix_memalign() man page:
// "alignment must be a power of two and a multiple of sizeof(void *)"
// volk_get_alignment() could return 1 for some machines (e.g. generic_orc)
if (alignment == 1)
return malloc(size);
// quoting posix_memalign() man page:
// "alignment must be a power of two and a multiple of sizeof(void *)"
// volk_get_alignment() could return 1 for some machines (e.g. generic_orc)
if (alignment == 1)
return malloc(size);
int err = posix_memalign(&ptr, alignment, size);
if(err == 0)

View File

@ -21,19 +21,17 @@
#include <string.h>
#include <volk_gnsssdr/volk_gnsssdr_prefs.h>
//#if defined(_WIN32)
//#include <Windows.h>
//#endif
void volk_gnsssdr_get_config_path(char *path)
{
if (!path) return;
const char *suffix = "/.volk_gnsssdr/volk_gnsssdr_config";
char *home = NULL;
if (home == NULL) home = getenv("HOME");
if (home == NULL) home = getenv("APPDATA");
if (home == NULL)
{
path = NULL;
path[0] = 0;
return;
}
strcpy(path, home);
@ -49,7 +47,7 @@ size_t volk_gnsssdr_load_preferences(volk_gnsssdr_arch_pref_t **prefs_res)
//get the config path
volk_gnsssdr_get_config_path(path);
if (path == NULL) return n_arch_prefs; //no prefs found
if (!path[0]) return n_arch_prefs; //no prefs found
config_file = fopen(path, "r");
if(!config_file) return n_arch_prefs; //no prefs found

View File

@ -32,10 +32,8 @@ include_directories(
file(GLOB SIGNAL_GENERATOR_BLOCK_HEADERS "*.h")
add_library(signal_generator_blocks ${SIGNAL_GENERATOR_BLOCK_SOURCES} ${SIGNAL_GENERATOR_BLOCK_HEADERS})
source_group(Headers FILES ${SIGNAL_GENERATOR_BLOCK_HEADERS})
target_link_libraries(signal_generator_blocks gnss_system_parameters
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${VOLK_LIBRARIES}
target_link_libraries(signal_generator_blocks gnss_system_parameters
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${VOLK_LIBRARIES} ${ORC_LIBRARIES}
)

View File

@ -114,7 +114,7 @@ NsrFileSignalSource::NsrFileSignalSource(ConfigurationInterface* configuration,
{
/*!
* BUG workaround: The GNU Radio file source does not stop the receiver after reaching the End of File.
* A possible solution is to compute the file length in samples using file size, excluding the last 100 milliseconds, and enable always the
* A possible solution is to compute the file length in samples using file size, excluding the last 2 milliseconds, and enable always the
* valve block
*/
std::ifstream file (filename_.c_str(), std::ios::in | std::ios::binary | std::ios::ate);

View File

@ -65,6 +65,7 @@ OsmosdrSignalSource::OsmosdrSignalSource(ConfigurationInterface* configuration,
if_gain_ = configuration->property(role + ".if_gain", (double)40.0);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)2.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
osmosdr_args_ = configuration->property(role + ".osmosdr_args", std::string( ));
if (item_type_.compare("short") == 0)
{
@ -76,7 +77,12 @@ OsmosdrSignalSource::OsmosdrSignalSource(ConfigurationInterface* configuration,
// 1. Make the driver instance
try
{
osmosdr_source_ = osmosdr::source::make();
if (!osmosdr_args_.empty())
{
std::cout << "OsmoSdr arguments: " << osmosdr_args_ << std::endl;
LOG(INFO) << "OsmoSdr arguments: " << osmosdr_args_;
}
osmosdr_source_ = osmosdr::source::make(osmosdr_args_);
}
catch( boost::exception & e )
{

View File

@ -100,6 +100,7 @@ private:
std::string dump_filename_;
osmosdr::source::sptr osmosdr_source_;
std::string osmosdr_args_;
boost::shared_ptr<gr::block> valve_;
gr::blocks::file_sink::sptr file_sink_;

View File

@ -326,7 +326,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
if (abs(corr_value) >= d_symbols_per_preamble)
{
//check preamble separation
preamble_diff = abs(d_sample_counter - d_preamble_index);
preamble_diff = d_sample_counter - d_preamble_index;
if (abs(preamble_diff - GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS) == 0)
{
//try to decode frame

View File

@ -208,7 +208,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
}
else if (d_stat == 1) //check 6 seconds of preamble separation
{
preamble_diff = abs(d_sample_counter - d_preamble_index);
preamble_diff = d_sample_counter - d_preamble_index;
if (abs(preamble_diff - 6000) < 1)
{
d_GPS_FSM.Event_gps_word_preamble();

View File

@ -16,7 +16,7 @@
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
#
set(TRACKING_GR_BLOCKS_SOURCES
set(TRACKING_GR_BLOCKS_SOURCES
galileo_e1_dll_pll_veml_tracking_cc.cc
galileo_volk_e1_dll_pll_veml_tracking_cc.cc
galileo_e1_tcp_connector_tracking_cc.cc
@ -27,7 +27,7 @@ set(TRACKING_GR_BLOCKS_SOURCES
galileo_e5a_dll_pll_tracking_cc.cc
gps_l2_m_dll_pll_tracking_cc.cc
)
include_directories(
$(CMAKE_CURRENT_SOURCE_DIR)
${CMAKE_SOURCE_DIR}/src/core/system_parameters
@ -49,7 +49,7 @@ endif(ENABLE_GENERIC_ARCH)
file(GLOB TRACKING_GR_BLOCKS_HEADERS "*.h")
add_library(tracking_gr_blocks ${TRACKING_GR_BLOCKS_SOURCES} ${TRACKING_GR_BLOCKS_HEADERS})
source_group(Headers FILES ${TRACKING_GR_BLOCKS_HEADERS})
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} )
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} )
if(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(tracking_gr_blocks volk_gnsssdr_module)
endif(NOT VOLK_GNSSSDR_FOUND)
endif(NOT VOLK_GNSSSDR_FOUND)

View File

@ -41,6 +41,7 @@
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "galileo_e1_signal_processing.h"
@ -259,17 +260,19 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
memcpy(d_very_late_code, &d_very_early_code[2 * very_early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
}
void galileo_e1_dll_pll_veml_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
// Compute the carrier phase step for the K-1 carrier doppler estimation
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
// Initialize the carrier phase with the remanent carrier phase of the K-2 loop
phase_rad = d_rem_carr_phase_rad;
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(2 * GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
phase_rad += phase_step_rad;
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
phase_rad_i += phase_step_rad_i;
}
}

View File

@ -40,6 +40,7 @@
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "galileo_e5_signal_processing.h"
@ -364,19 +365,23 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
}
void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(2 * GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
phase_step_rad = 2 * static_cast<float>(GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_rad = d_rem_carr_phase_rad;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
phase_rad += phase_step_rad;
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
phase_rad_i += phase_step_rad_i;
}
}
int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{

View File

@ -41,6 +41,7 @@
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "gps_sdr_signal_processing.h"
@ -182,7 +183,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
@ -286,14 +287,16 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_code()
void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_rad = d_rem_carr_phase_rad;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
phase_rad += phase_step_rad;
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
phase_rad_i += phase_step_rad_i;
}
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
@ -519,9 +522,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]"<< std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
}
}
}

View File

@ -397,7 +397,7 @@ void GNSSFlowgraph::wait()
*/
void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
{
LOG(INFO) << "received " << what << " from " << who;
DLOG(INFO) << "received " << what << " from " << who;
switch (what)
{
@ -434,13 +434,10 @@ void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
channels_.at(i)->start_acquisition();
break;
}
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
}
}
for (unsigned int i = 0; i < channels_count_; i++)
{
LOG(INFO) << "Channel " << i << " in state " << channels_state_[i] << std::endl;
}
break;
case 2:
@ -457,16 +454,16 @@ void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
channels_.at(who)->standby();
}
for (unsigned int i = 0; i < channels_count_; i++)
{
LOG(INFO) << "Channel " << i << " in state " << channels_state_[i] << std::endl;
}
// for (unsigned int i = 0; i < channels_count_; i++)
// {
// LOG(INFO) << "Channel " << i << " in state " << channels_state_[i] << std::endl;
// }
break;
default:
break;
}
LOG(INFO) << "Number of available satellites: " << available_GNSS_signals_.size();
DLOG(INFO) << "Number of available satellites: " << available_GNSS_signals_.size();
}
@ -594,7 +591,7 @@ void GNSSFlowgraph::set_signals_list()
* Loop to create GPS L1 C/A signals
*/
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32 };
for (available_gnss_prn_iter = available_gps_prn.begin();
@ -729,11 +726,8 @@ void GNSSFlowgraph::set_channels_state()
}
else
channels_state_.push_back(0);
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
}
acq_channels_count_ = max_acq_channels_;
DLOG(INFO) << acq_channels_count_ << " channels in acquisition state";
for (unsigned int i = 0; i < channels_count_; i++)
{
LOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
}
}

View File

@ -1,6 +1,6 @@
/*!
* \file Galileo_Navigation_Message.cc
* \brief Implementation of a Galileo I/NAV Data message
* \file galileo_navigation_message.cc
* \brief Implementation of a Galileo I/NAV Data message
* as described in Galileo OS SIS ICD Issue 1.1 (Sept. 2010)
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas, 2013. jarribas(at)cttc.es

View File

@ -29,6 +29,7 @@
*/
#include "galileo_utc_model.h"
#include <cmath>
Galileo_Utc_Model::Galileo_Utc_Model()
{
@ -57,7 +58,7 @@ double Galileo_Utc_Model::GST_to_UTC_time(double t_e, int WN)
{
//Detect if the effectivity time and user's time is within six hours = 6 * 60 *60 = 21600 s
int secondOfLeapSecondEvent = DN_6 * 24 * 60 * 60;
if (abs(t_e - secondOfLeapSecondEvent) > 21600)
if (std::abs(t_e - secondOfLeapSecondEvent) > 21600)
{
/* 5.1.7a GST->UTC case a
* Whenever the leap second adjusted time indicated by the WN_LSF and the DN values

View File

@ -31,6 +31,7 @@
*/
#include "gps_navigation_message.h"
#include <cmath>
#include "boost/date_time/posix_time/posix_time.hpp"
@ -697,7 +698,7 @@ double Gps_Navigation_Message::utc_time(const double gpstime_corrected) const
}
else //we are in the same week than the leap second event
{
if (abs(gpstime_corrected - secondOfLeapSecondEvent) > 21600)
if (std::abs(gpstime_corrected - secondOfLeapSecondEvent) > 21600)
{
/* 20.3.3.5.2.4a
* Whenever the effectivity time indicated by the WN_LSF and the DN values

View File

@ -29,6 +29,7 @@
*/
#include "gps_utc_model.h"
#include <cmath>
Gps_Utc_Model::Gps_Utc_Model()
{
@ -62,7 +63,7 @@ double Gps_Utc_Model::utc_time(double gpstime_corrected, int i_GPS_week)
}
else //we are in the same week than the leap second event
{
if (abs(gpstime_corrected - secondOfLeapSecondEvent) > 21600)
if (std::abs(gpstime_corrected - secondOfLeapSecondEvent) > 21600)
{
/* 20.3.3.5.2.4a
* Whenever the effectivity time indicated by the WN_LSF and the DN values

View File

@ -28,10 +28,11 @@
* -------------------------------------------------------------------------
*/
#include <stdarg.h>
#include <stdio.h>
#include <cmath>
#include <cstring>
#include <iostream>
#include <stdarg.h>
#include <stdio.h>
#include <glog/logging.h>
#include "sbas_telemetry_data.h"
#include "sbas_ionospheric_correction.h"
@ -722,7 +723,7 @@ int Sbas_Telemetry_Data::decode_sbstype9(const sbsmsg_t *msg, nav_t *nav)
seph.af1 = getbits(msg->msg, 218, 8)*P2_39/2.0;
i = msg->prn-MINPRNSBS;
if (!nav->seph || fabs(nav->seph[i].t0 - seph.t0) < 1E-3)
if (!nav->seph || std::abs(nav->seph[i].t0 - seph.t0) < 1E-3)
{ /* not change */
VLOG(FLOW) << "<<T>> no change in ephemeris -> won't parse";
return 0;

View File

@ -29,7 +29,7 @@ endif(ENABLE_GPERFTOOLS)
if(ENABLE_UHD)
set(GNSS_SDR_OPTIONAL_LIBS ${GNSS_SDR_OPTIONAL_LIBS} ${UHD_LIBRARIES} ${GNURADIO_UHD_LIBRARIES})
set(GNSS_SDR_OPTIONAL_HEADERS ${GNSS_SDR_OPTIONAL_HEADERS} ${UHD_INCLUDE_DIRS})
set(GNSS_SDR_OPTIONAL_HEADERS ${GNSS_SDR_OPTIONAL_HEADERS} ${UHD_INCLUDE_DIRS})
endif(ENABLE_UHD)
include_directories(
@ -42,7 +42,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/libs/supl/asn-supl
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
${ARMADILLO_INCLUDE_DIRS}
${ARMADILLO_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}
${GNURADIO_RUNTIME_INCLUDE_DIRS}
${GNSS_SDR_OPTIONAL_HEADERS}
@ -65,18 +65,18 @@ add_custom_command(TARGET gnss-sdr POST_BUILD
${CMAKE_SOURCE_DIR}/install/$<TARGET_FILE_NAME:gnss-sdr>
)
target_link_libraries(gnss-sdr ${MAC_LIBRARIES}
target_link_libraries(gnss-sdr ${MAC_LIBRARIES}
${Boost_LIBRARIES}
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${GNURADIO_FILTER_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GNURADIO_FFT_LIBRARIES}
${GNURADIO_FILTER_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES}
${GNSS_SDR_OPTIONAL_LIBS}
gnss_sp_libs
gnss_sp_libs
gnss_rx
)
@ -85,7 +85,7 @@ install(TARGETS gnss-sdr
RUNTIME DESTINATION bin
COMPONENT "gnss-sdr"
)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/conf DESTINATION share/gnss-sdr
FILES_MATCHING PATTERN "*.conf"
)

View File

@ -0,0 +1,183 @@
/*!
* \file code_generation_test.cc
* \brief This file implements tests for the generation of complex exponentials.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <complex>
#include <ctime>
#include "gps_sdr_signal_processing.h"
#include "gnss_signal_processing.h"
TEST(CodeGenGPSL1_Test, CodeGeneration)
{
std::complex<float>* _dest = new std::complex<float>[1023];
signed int _prn = 1;
unsigned int _chip_shift = 4;
int iterations = 100000;
struct timeval tv;
gettimeofday(&tv, NULL);
long long int begin = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
gps_l1_ca_code_gen_complex( _dest, _prn, _chip_shift);
}
gettimeofday(&tv, NULL);
long long int end = tv.tv_sec * 1000000 + tv.tv_usec;
ASSERT_LE(0, end - begin);
std::cout << "Generation completed in " << (end - begin) << " microseconds" << std::endl;
delete[] _dest;
/* std::complex<float>* _dest2 = new std::complex<float>[1023];gettimeofday(&tv, NULL);
long long int begin2 = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
gps_l1_ca_code_gen_complex2( _dest2, _prn, _chip_shift);
}
gettimeofday(&tv, NULL);
long long int end2 = tv.tv_sec * 1000000 + tv.tv_usec;
std::cout << "Generation 2 completed in " << (end2 - begin2) << " microseconds" << std::endl;
for (int j=0; j<1023;j++)
{
if(_dest[j] != _dest2[j]) std::cout << "Error!" << std::endl;
}
delete _dest2; */
}
TEST(CodeGenGPSL1Sampled_Test, CodeGeneration)
{
signed int _prn = 1;
unsigned int _chip_shift = 4;
int _fs = 8000000;
const signed int _codeFreqBasis = 1023000; //Hz
const signed int _codeLength = 1023;
int _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
std::complex<float>* _dest = new std::complex<float>[_samplesPerCode];
int iterations = 10000;
struct timeval tv;
gettimeofday(&tv, NULL);
long long int begin = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
gps_l1_ca_code_gen_complex_sampled( _dest, _prn, _fs, _chip_shift);
}
gettimeofday(&tv, NULL);
long long int end = tv.tv_sec * 1000000 + tv.tv_usec;
ASSERT_LE(0, end - begin);
std::cout << "Generation completed in " << (end - begin) << " microseconds" << std::endl;
delete[] _dest;
/* std::complex<float>* _dest2 = new std::complex<float>[_samplesPerCode];
gettimeofday(&tv, NULL);
long long int begin2 = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
gps_l1_ca_code_gen_complex_sampled2( _dest2, _prn, _fs, _chip_shift);
}
gettimeofday(&tv, NULL);
long long int end2 = tv.tv_sec * 1000000 + tv.tv_usec;
std::cout << "Generation completed in " << (end2 - begin2) << " microseconds (New)" << std::endl;
for (int j=0; j<_samplesPerCode;j++)
{
if(_dest[j] != _dest2[j]) std::cout << "Error!" << std::endl;
}
delete[] _dest2; */
}
TEST(ComplexCarrier_Test, CodeGeneration)
{
//signed int _prn = 1;
//unsigned int _chip_shift = 4;
double _fs = 8000000;
double _f = 4000;
const signed int _codeFreqBasis = 1023000; //Hz
const signed int _codeLength = 1023;
int _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
std::complex<float>* _dest = new std::complex<float>[_samplesPerCode];
int iterations = 100000;
struct timeval tv;
gettimeofday(&tv, NULL);
long long int begin = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
//gps_l1_ca_code_gen_complex_sampled( _dest, _prn, _fs, _chip_shift);
complex_exp_gen_conj( _dest, _f, _fs, _samplesPerCode);
}
gettimeofday(&tv, NULL);
long long int end = tv.tv_sec * 1000000 + tv.tv_usec;
ASSERT_LE(0, end - begin);
std::cout << "Carrier generation completed in " << (end - begin) << " microseconds" << std::endl;
/* std::complex<float>* _dest2 = new std::complex<float>[_samplesPerCode];
gettimeofday(&tv, NULL);
long long int begin2 = tv.tv_sec * 1000000 + tv.tv_usec;
for(int i = 0; i < iterations; i++)
{
complex_exp_gen_conj2( _dest2, _f, _fs, _samplesPerCode);
}
gettimeofday(&tv, NULL);
long long int end2 = tv.tv_sec * 1000000 + tv.tv_usec;
std::cout << "Carrier generation completed in " << (end2 - begin2) << " microseconds (New)" << std::endl;
for (int j=0; j<_samplesPerCode;j++)
{
if(std::abs(_dest[j] - _dest2[j]) > 0.1) std::cout << "Error!" << std::endl;
}
std::cout << _dest[10] << "and " << _dest2[10] << std::endl;
delete[] _dest2;*/
delete[] _dest;
}

View File

@ -320,8 +320,8 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -323,8 +323,8 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -240,9 +240,9 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults)
std::cout << "Delay: " << gnss_synchro.Acq_delay_samples << std::endl;
std::cout << "Doppler: " << gnss_synchro.Acq_doppler_hz << std::endl;
double delay_error_samples = abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = (float)(delay_error_samples * 1023 / 4000000);
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 166) << "Doppler error exceeds the expected value: 166 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.175) << "Delay error exceeds the expected value: 0.175 chips";

View File

@ -321,8 +321,8 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -436,8 +436,8 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0 / ((double)fs_in * 1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0 / ((double)fs_in * 1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -328,8 +328,8 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -446,20 +446,20 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::process_message()
switch (sat)
{
case 0:
delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
break;
case 1:
delay_error_chips = abs((double)expected_delay_chips1 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = abs(expected_doppler_hz1 - gnss_synchro.Acq_doppler_hz);
delay_error_chips = std::abs((double)expected_delay_chips1 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = std::abs(expected_doppler_hz1 - gnss_synchro.Acq_doppler_hz);
break;
case 2:
delay_error_chips = abs((double)expected_delay_chips2 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = abs(expected_doppler_hz2 - gnss_synchro.Acq_doppler_hz);
delay_error_chips = std::abs((double)expected_delay_chips2 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = std::abs(expected_doppler_hz2 - gnss_synchro.Acq_doppler_hz);
break;
case 3:
delay_error_chips = abs((double)expected_delay_chips3 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = abs(expected_doppler_hz3 - gnss_synchro.Acq_doppler_hz);
delay_error_chips = std::abs((double)expected_delay_chips3 - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3));
doppler_error_hz = std::abs(expected_doppler_hz3 - gnss_synchro.Acq_doppler_hz);
break;
default: // case 3
std::cout << "Error: message from unexpected acquisition channel" << std::endl;

View File

@ -318,8 +318,8 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -322,8 +322,8 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -317,8 +317,8 @@ void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples- 5 )*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples- 5 )*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -429,8 +429,8 @@ void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0/ ((double)fs_in * 1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0/ ((double)fs_in * 1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -319,8 +319,8 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::process_message()
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);

View File

@ -29,6 +29,7 @@
* -------------------------------------------------------------------------
*/
#include <cmath>
#include <iostream>
#include <queue>
#include <boost/thread.hpp>

View File

@ -29,9 +29,7 @@
* -------------------------------------------------------------------------
*/
#include <cmath>
#include <iostream>
#include <queue>
#include <memory>
@ -72,6 +70,7 @@ DECLARE_string(log_dir);
#include "arithmetic/conjugate_test.cc"
#include "arithmetic/magnitude_squared_test.cc"
#include "arithmetic/multiply_test.cc"
#include "arithmetic/code_generation_test.cc"
#include "configuration/file_configuration_test.cc"
#include "configuration/in_memory_configuration_test.cc"
#include "control_thread/control_message_factory_test.cc"

View File

@ -24,7 +24,7 @@ if(ENABLE_OSMOSDR)
${CMAKE_SOURCE_DIR}/src/core/system_parameters
${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/core/libs
${CMAKE_SOURCE_DIR}/src/core/libs
${CMAKE_SOURCE_DIR}/src/core/libs/supl
${CMAKE_SOURCE_DIR}/src/core/libs/supl/asn-rrlp
${CMAKE_SOURCE_DIR}/src/core/libs/supl/asn-supl
@ -35,7 +35,7 @@ if(ENABLE_OSMOSDR)
${GFlags_INCLUDE_DIRS}
${GNURADIO_RUNTIME_INCLUDE_DIRS}
${GNURADIO_BLOCKS_INCLUDE_DIRS}
${ARMADILLO_INCLUDE_DIRS}
${ARMADILLO_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}
${VOLK_GNSSSDR_INCLUDE_DIRS}
)
@ -43,15 +43,15 @@ if(ENABLE_OSMOSDR)
file(GLOB FRONT_END_CAL_HEADERS "*.h")
add_library(front_end_cal_lib ${FRONT_END_CAL_SOURCES} ${FRONT_END_CAL_HEADERS})
source_group(Headers FILES ${FRONT_END_CAL_HEADERS})
target_link_libraries(front_end_cal_lib ${Boost_LIBRARIES}
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
target_link_libraries(front_end_cal_lib ${Boost_LIBRARIES}
${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES}
gnss_rx
gnss_rx
gnss_sp_libs
)
@ -63,24 +63,25 @@ if(ENABLE_OSMOSDR)
add_custom_command(TARGET front-end-cal POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy $<TARGET_FILE:front-end-cal>
${CMAKE_SOURCE_DIR}/install/$<TARGET_FILE_NAME:front-end-cal>)
target_link_libraries(front-end-cal ${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${Boost_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
gnss_rx
gnss_sp_libs
target_link_libraries(front-end-cal ${GNURADIO_RUNTIME_LIBRARIES}
${GNURADIO_BLOCKS_LIBRARIES}
${Boost_LIBRARIES}
${GFlags_LIBS}
${GLOG_LIBRARIES}
${ARMADILLO_LIBRARIES}
gnss_rx
gnss_sp_libs
front_end_cal_lib
${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES}
)
install(TARGETS front-end-cal
install(TARGETS front-end-cal
RUNTIME DESTINATION bin
COMPONENT "front-end-cal"
)
find_program(GZIP gzip
/bin
/usr/bin
@ -93,7 +94,7 @@ if(ENABLE_OSMOSDR)
execute_process(COMMAND gzip -9 -c ${CMAKE_SOURCE_DIR}/docs/manpage/front-end-cal-manpage
WORKING_DIRECTORY ${CMAKE_BINARY_DIR} OUTPUT_FILE "${CMAKE_BINARY_DIR}/front-end-cal.1.gz")
install(FILES ${CMAKE_BINARY_DIR}/front-end-cal.1.gz DESTINATION share/man/man1)
install(FILES ${CMAKE_BINARY_DIR}/front-end-cal.1.gz DESTINATION share/man/man1)
endif(NOT GZIP_NOTFOUND)
endif(ENABLE_OSMOSDR)