More importantly, `./gradlew check' actually runs the in-game tests,
which makes the CI steps look a little more sensible again.
Somewhat depressing that one of the longest files (15th) in CC:T is the
build script.
Name a more iconic duo than @SquidDev and over-engineered test
frameworks.
This uses Minecraft's test core[1] plus a home-grown framework to run
tests against computers in-world.
The general idea is:
- Build a structure in game.
- Save the structure to a file. This will be spawned in every time the
test is run.
- Write some code which asserts the structure behaves in a particular
way. This is done in Kotlin (shock, horror), as coroutines give us a
nice way to run asynchronous code while still running on the main
thread.
As with all my testing efforts, I still haven't actually written any
tests! It'd be good to go through some of the historic ones and write
some tests though. Turtle block placing and computer redstone
interactions are probably a good place to start.
[1]: https://www.youtube.com/watch?v=vXaWOJTCYNg
ForgeGradle (probably sensibly) yells at me about doing this. However:
- There's a reasonable number of mods doing this, which establishes
some optimistic precedent.
- The licence update in Aug 2020 now allows you to use them for
"development purposes". I guess source code counts??
- I'm fairly sure this is also compatible with the CCPL - there's an
exception for Minecraft code.
The main motivation for this is to make the Fabric port a little
easier. Hopefully folks (maybe me in the future, we'll see) will no
longer have to deal with mapping hell when merging - only mod loader
hell.
Provides a basic interface for running examples on tweaked.cc. This is probably
janky as anything, but it works on my machine.
This is the culmination of 18 months of me building far too much infrastructure
(copy-cat, illuaminate), so that's nice I guess.
I should probably get out more.
When we construct a new ServerPlayerEntity (and thus TurtlePlayer), we
get the current (global) advancement state and call .setPlayer() on it.
As grantCriterion blocks FakePlayers from getting advancements, this
means a player will no longer receive any advancements, as the "wrong"
player object is being consulted.
As a temporary work around, we attempt to restore the previous player to
the advancement store. I'll try to upstream something into Forge to
resolve this properly.
Fixes#564
A lot is broken, but at least we can get in game:
- GUIs render a whole bunch of additional "inventory" text, which we
really don't want.
- Computers load from the wrong location.
- There's some issues with using Forge's tags from outside of JSON
recipes. We need to work out why.
illuaminate does not handle Java files, for obvious reasons. In order to
get around that, we have a series of stub files within /doc/stub which
mirrored the Java ones. While this works, it has a few problems:
- The link to source code does not work - it just links to the stub
file.
- There's no guarantee that documentation remains consistent with the
Java code. This change found several methods which were incorrectly
documented beforehand.
We now replace this with a custom Java doclet[1], which extracts doc
comments from @LuaFunction annotated methods and generates stub-files
from them. These also contain a @source annotation, which allows us to
correctly link them back to the original Java code.
There's some issues with this which have yet to be fixed. However, I
don't think any of them are major blockers right now:
- The custom doclet relies on Java 9 - I think it's /technically/
possible to do this on Java 8, but the API is significantly uglier.
This means that we need to run javadoc on a separate JVM.
This is possible, and it works locally and on CI, but is definitely
not a nice approach.
- illuaminate now requires the doc stubs to be generated in order for
the linter to pass, which does make running the linter locally much
harder (especially given the above bullet point).
We could notionally include the generated stubs (or at least a cut
down version of them) in the repo, but I'm not 100% sure about that.
[1]: https://docs.oracle.com/javase/9/docs/api/jdk/javadoc/doclet/package-summary.html
This allows for configuring the size of computers and pocket computers,
as well as the max size of monitors.
There's several limitations with the current implementation, but it's
still "good enough" for an initial release:
- Turtles cannot be resized.
- GUIs do not scale themselves, so "large" sizes will not render within
the default resolution.
This exposes a basic peripheral for any tile entity which does not have methods
already registered. We currently provide the following methods:
- Inventories: size, list, getItemMeta, pushItems, pullItems.
- Energy storage: getEnergy, getEnergyCapacity
- Fluid tanks: tanks(), pushFluid, pullFluid.
These methods are currently experimental - it must be enabled through
`experimental.generic_peripherals`. While this is an initial step towards
implementing #452, but is by no means complete.
We never added back replacing of ${version} strings, which means that CC
was reporting incorrect version numbers in _HOST, the user agent and
network versions. This meant we would allow connections even on
mismatched versions (#464).
We shift all version handling into ComputerCraftAPI(Impl) - this now
relies on Forge code, so we don't want to run it in emulators.
It should be release quality in all honesty[^1], but let's leave it a
few days to see if any issues trickle in.
[^1]: Well, aside from upsidedown turtles!
When creating a peripheral or custom Lua object, one must implement two
methods:
- getMethodNames(): String[] - Returns the name of the methods
- callMethod(int, ...): Object[] - Invokes the method using an index in
the above array.
This has a couple of problems:
- It's somewhat unwieldy to use - you need to keep track of array
indices, which leads to ugly code.
- Functions which yield (for instance, those which run on the main
thread) are blocking. This means we need to spawn new threads for
each CC-side yield.
We replace this system with a few changes:
- @LuaFunction annotation: One may annotate a public instance method
with this annotation. This then exposes a peripheral/lua object
method.
Furthermore, this method can accept and return a variety of types,
which often makes functions cleaner (e.g. can return an int rather
than an Object[], and specify and int argument rather than
Object[]).
- MethodResult: Instead of returning an Object[] and having blocking
yields, functions return a MethodResult. This either contains an
immediate return, or an instruction to yield with some continuation
to resume with.
MethodResult is then interpreted by the Lua runtime (i.e. Cobalt),
rather than our weird bodgey hacks before. This means we no longer
spawn new threads when yielding within CC.
- Methods accept IArguments instead of a raw Object array. This has a
few benefits:
- Consistent argument handling - people no longer need to use
ArgumentHelper (as it doesn't exist!), or even be aware of its
existence - you're rather forced into using it.
- More efficient code in some cases. We provide a Cobalt-specific
implementation of IArguments, which avoids the boxing/unboxing when
handling numbers and binary strings.
- Use jacoco for Java-side coverage. Our Java coverage is /terrible
(~10%), as we only really test the core libraries. Still a good thing
to track for regressions though.
- mcfly now tracks Lua side coverage. This works in several stages:
- Replace loadfile to include the whole path
- Add a debug hook which just tracks filename->(lines->count). This
is then submitted to the Java test runner.
- On test completion, we emit a luacov.report.out file.
As the debug hook is inserted by mcfly, this does not include any
computer startup (such as loading apis, or the root of bios.lua),
despite they're executed.
This would be possible to do (for instance, inject a custom header
into bios.lua). However, we're not actually testing any of the
behaviour of startup (aside from "does it not crash"), so I'm not
sure whether to include it or not. Something I'll most likely
re-evaluate.
- Remove stub for table.pack/table.unpack.
- Remove Lua 5.3 bitlib stub. We're not on 5.3, there's no
point emulating it.
- Change peripheral.call to correctly adjust the error level. This is a
terrible hack, but I believe the only good option.
It'd be good to remove load as well, but it's a little more complex due
to our injecting of _ENV.
Closes#363
See #354
- Remove Lua script to generate recipes/advancements for coloured
disks, turtle upgrades and pocket upgrades. Replacing them with Lua
ones.
- Generate most block drops via the data generator system. Aside from
cables, they all follow one of two templates.
Most of the port is pretty simple. The main problems are regarding
changes to Minecraft's rendering system.
- Remove several rendering tweaks until Forge's compatibility it
brought up-to-date
- Map rendering for pocket computers and printouts
- Item frame rendering for printouts
- Custom block outlines for monitors and cables/wired modems
- Custom breaking progress for cables/wired modems
- Turtle "Dinnerbone" rendering is currently broken, as normals are not
correctly transformed.
- Rewrite FixedWidthFontRenderer to to the buffer in a single sweep.
In order to do this, the term_font now also bundles a "background"
section, which is just a blank region of the screen.
- Render monitors using a VBO instead of a call list. I haven't
compared performance yet, but it manages to render a 6x5 array of
_static_ monitors at almost 60fps, which seems pretty reasonable.
Unfortunately we can't apply the config changes due to backwards
compatibility. This'll be something we may need to PR into Forge.
CraftTweaker support still needs to be added.
This provides the following methods:
- dan200.computercraft.turtle.removeUpgrade(id: String)
- dan200.computercraft.turtle.removeUpgrade(stack: IItemStack)
- dan200.computercraft.turtle.addTool(id: String, craftItem: IItemStack[, toolItem: IItemStack][, kind: string])
While it's pretty minimal, it should allow for a reasonable amount of
functionality.
Closes#327 and #97.
Mostly just rearranging. Bump JUnit version in an attempt to fix test
outputs, but it appears this is a mix of gradle/gradle#5975 and
gradle/gradle#4438.
So very little works, but it compiles and runs.
Things to resolve over the next few days:
- Horrible mappings (should largely be resolved by tomorrow).
- Cannot send extra data over containers - we'll have to see what Forge
does here.
- Turtle models are broken
- No block drops yet - this will largely be cherry-picking whatever I
did on Fabric.
- Weird inventory desyncs (items don't show up initially when
interacting with a CC inventory).
- Probably lots of other things.
- Adds a CheckStyle configuration which is pretty similar to CC's
existing one.
- Add the Gradle license plugin.
- Ensure the existing source code is compatible with these additional
checks.
See #239
Look, I originally had this split into several commits, but lots of
other cleanups got mixed in. I then backported some of the cleanups to
1.12, did other tidy ups there, and eventually the web of merges was
unreadable.
Yes, this is a horrible mess, but it's still nicer than it was. Anyway,
changes:
- Flatten everything. For instance, there are now three instances of
BlockComputer, two BlockTurtle, ItemPocketComputer. There's also no
more BlockPeripheral (thank heavens) - there's separate block classes
for each peripheral type.
- Remove pretty much all legacy code. As we're breaking world
compatibility anyway, we can remove all the code to load worlds from
1.4 days.
- The command system is largely rewriten to take advantage of 1.13's
new system. It's very fancy!
- WidgetTerminal now uses Minecraft's "GUI listener" system.
- BREAKING CHANGE: All the codes in keys.lua are different, due to the
move to LWJGL 3. Hopefully this won't have too much of an impact.
I don't want to map to the old key codes on the Java side, as there
always ends up being small but slight inconsistencies. IMO it's
better to make a clean break - people should be using keys rather
than hard coding the constants anyway.
- commands.list now allows fetching sub-commands. The ROM has already
been updated to allow fancy usage such as commands.time.set("noon").
- Turtles, modems and cables can be waterlogged.
- Some performance improvements to JEI recipe resolver
- Use a shared map for upgrade items, meaning we only need one map
lookup.
- Cache the basic upgrade recipes.
- Use the MC version within project rather than version name.
- Turtle and pocket computers provide a "creator mod id" based on their
upgrade(s).
We track which mod was active when the upgrade was registered, and
use that to determine the owner. Technically we could use the
RegistryLocation ID, but this is not always correct (such as
Plethora's vanilla modules).
- We show all upgraded turtles/pocket computers in JEI now, rather than
just CC ones.
- We provide a custom IRecipeRegistryPlugin for upgrades, which
provides custom usage/recipes for any upgrade or upgraded item. We
also hide our generated turtle/pocket computer recipes in order to
prevent duplicates.
This allows wireless modems (advanced and normal) to be used in
multiparts. There's a very limited set of uses for this (mostly allows
using Chisel and Bits with them), but it's very simple to do.
I'd like to look into MCMP support for wired modems/cables in the
future, but this will be somewhat harder due to their pre-existing
multiblock structure.
Similarly, might be fun to look into CBMP compatibility.
- Restrict what items can be inserted into printers. They're now closer
to brewing stands or furnaces: nothing can go in the output slot,
only ink in the ink slot, and only paper in the paper slot.
- Fix build.gradle using the wrong version
- Trim the width of tables to fit when displaying on the client. Closes
#45. Note, our solution isn't perfect, as it will wordwrap too, but
it's adaquate for now.
- Reword elements of the README, mostly changing the elements about
vanilla ComputerCraft.
- Change versioning scheme: we'll now do 1.x.y, with 1.81.0 being the
next version.
- Include MC version in the file name
- Stop bundling javadoc with the jar. We'll look into hosting this on
squiddev.cc if really needed.
- Remove the LuaJ license from the root - we no longer bundle the
sources, so it's not needed here.
I realise this change looks a little dodgey on its own, so see #113 for
the full rationale.