When creating a peripheral or custom Lua object, one must implement two
methods:
- getMethodNames(): String[] - Returns the name of the methods
- callMethod(int, ...): Object[] - Invokes the method using an index in
the above array.
This has a couple of problems:
- It's somewhat unwieldy to use - you need to keep track of array
indices, which leads to ugly code.
- Functions which yield (for instance, those which run on the main
thread) are blocking. This means we need to spawn new threads for
each CC-side yield.
We replace this system with a few changes:
- @LuaFunction annotation: One may annotate a public instance method
with this annotation. This then exposes a peripheral/lua object
method.
Furthermore, this method can accept and return a variety of types,
which often makes functions cleaner (e.g. can return an int rather
than an Object[], and specify and int argument rather than
Object[]).
- MethodResult: Instead of returning an Object[] and having blocking
yields, functions return a MethodResult. This either contains an
immediate return, or an instruction to yield with some continuation
to resume with.
MethodResult is then interpreted by the Lua runtime (i.e. Cobalt),
rather than our weird bodgey hacks before. This means we no longer
spawn new threads when yielding within CC.
- Methods accept IArguments instead of a raw Object array. This has a
few benefits:
- Consistent argument handling - people no longer need to use
ArgumentHelper (as it doesn't exist!), or even be aware of its
existence - you're rather forced into using it.
- More efficient code in some cases. We provide a Cobalt-specific
implementation of IArguments, which avoids the boxing/unboxing when
handling numbers and binary strings.
This uses the system described in #409, to render monitors in a more
efficient manner.
Each monitor is backed by a texture buffer object (TBO) which contains
a relatively compact encoding of the terminal state. This is then
rendered using a shader, which consumes the TBO and uses it to index
into main font texture.
As we're transmitting significantly less data to the GPU (only 3 bytes
per character), this effectively reduces any update lag to 0. FPS appears
to be up by a small fraction (10-15fps on my machine, to ~110), possibly
as we're now only drawing a single quad (though doing much more work in
the shader).
On my laptop, with its Intel integrated graphics card, I'm able to draw
120 full-sized monitors (with an effective resolution of 3972 x 2330) at
a consistent 60fps. Updates still cause a slight spike, but we always
remain above 30fps - a significant improvement over VBOs, where updates
would go off the chart.
Many thanks to @Lignum and @Lemmmy for devising this scheme, and helping
test and review it! ♥
- Write to a PacketBuffer instead of generating an NBT tag. This is
then converted to an NBT byte array when we send across the network.
- Pack background/foreground colours into a single byte.
This derives from some work I did back in 2017, and some of the changes
made/planned in #409. However, this patch does not change how terminals
are represented, it simply makes the transfer more compact.
This makes the patch incredibly small (100 lines!), but also limited in
what improvements it can make compared with #409. We send 26626 bytes
for a full-sized monitor. While a 2x improvement over the previous 58558
bytes, there's a lot of room for improvement.
- Remove the parenthesis around the text (so it's now
"Computer ID: 12"), rather than "(Computer ID: 12").
- Show the tooltip if the computer has an ID and no label (as well as
when in advanced mode).
This replaces the allow/block lists with a series of rules. Each rule
takes the form
[[http.rules]]
host = "127.0.0.0/8"
action = "block"
This is pretty much the same as the previous config style, in that hosts
may be domains, wildcards or in CIDR notation. However, they may also be
mixed, so you could allow a specific IP, and then block all others.
This is a backport of 1.15's terminal rendering code with some further
improvements. This duplicates a fair bit of code, and is much more
efficient.
I expect the work done in #409 will supersede this, but that's unlikely
to make its way into the next release so it's worth getting this in for
now.
- Refactor a lot of common terminal code into
`FixedWithFontRenderer`. This shouldn't change any behaviour, but
makes a lot of our terminal renderers (printed pages, terminals,
monitors) a lot cleaner.
- Terminal rendering is done using a single mode/vertex format. Rather
than drawing an untextured quad for the background colours, we use an
entirely white piece of the terminal font. This allows us to batch
draws together more elegantly.
- Some minor optimisations:
- Skip rendering `"\0"` and `" "` characters. These characters occur
pretty often, especially on blank monitors and, as the font is empty
here, it is safe to skip them.
- Batch together adjacent background cells of the same colour. Again,
most terminals will have large runs of the same colour, so this is a
worthwhile optimisation.
These optimisations do mean that terminal performance is no longer
consistent as "noisy" terminals will have worse performance. This is
annoying, but still worthwhile.
- Switch monitor rendering over to use VBOs.
We also add a config option to switch between rendering backends. By
default we'll choose the best one compatible with your GPU, but there
is a config option to switch between VBOS (reasonable performance) and
display lists (bad).
When benchmarking 30 full-sized monitors rendering a static image, this
improves my FPS[^1] from 7 to 95. This is obviously an extreme case -
monitor updates are still slow, and so more frequently updating screens
will still be less than stellar.
[^1]: My graphics card is an Intel HD Graphics 520. Obviously numbers
will vary.
This would return true for any block with a fluid in it, including
waterlogged blocks. This resulted in much broken behaviour
- Turtles cannot place blocks when waterlogged (fixedd #385)
- Turtles could move into waterlogged blocks (such as fences),
replacing them.
It hasn't been http_enable for yonks - slightly worried I didn't notice
this earlier.
Also don't refer to ComputerCraft.cfg - the name has changed several
times across versions, so let's leave it ambiguous.
See #354
- Remove Lua script to generate recipes/advancements for coloured
disks, turtle upgrades and pocket upgrades. Replacing them with Lua
ones.
- Generate most block drops via the data generator system. Aside from
cables, they all follow one of two templates.
- Remove *Stream methods on IMount/IWritableMount, and make the channel
ones the primary.
- Fix location of AbstractTurtleUpgrade
- Make IComputerAccess.getAvailablePeripheral and .getMainThreadMonitor
mandatory.
- IComputerAccess throws a specialised NotAttachedException
Most of the port is pretty simple. The main problems are regarding
changes to Minecraft's rendering system.
- Remove several rendering tweaks until Forge's compatibility it
brought up-to-date
- Map rendering for pocket computers and printouts
- Item frame rendering for printouts
- Custom block outlines for monitors and cables/wired modems
- Custom breaking progress for cables/wired modems
- Turtle "Dinnerbone" rendering is currently broken, as normals are not
correctly transformed.
- Rewrite FixedWidthFontRenderer to to the buffer in a single sweep.
In order to do this, the term_font now also bundles a "background"
section, which is just a blank region of the screen.
- Render monitors using a VBO instead of a call list. I haven't
compared performance yet, but it manages to render a 6x5 array of
_static_ monitors at almost 60fps, which seems pretty reasonable.
Unfortunately we can't apply the config changes due to backwards
compatibility. This'll be something we may need to PR into Forge.
CraftTweaker support still needs to be added.
It appears that WB opens containers manually, and thus all of our stubs
network stubs are entirely ignored. Thus the only solution here is to
stub out the whole network handler code.
Thankfully this is simple enough - we do the same for Plethora and 1.14.
Fixes#328
This provides the following methods:
- dan200.computercraft.turtle.removeUpgrade(id: String)
- dan200.computercraft.turtle.removeUpgrade(stack: IItemStack)
- dan200.computercraft.turtle.addTool(id: String, craftItem: IItemStack[, toolItem: IItemStack][, kind: string])
While it's pretty minimal, it should allow for a reasonable amount of
functionality.
Closes#327 and #97.
This fixes them not rendering particles when broken. Particle rendering
is a little janky right now, as it uses the whole texture - we should
probably split up the texture into smaller images. Fixes#315
This should fix several issues (see #304, etc...). I'll try to get round
to PRing this into Forge at some point, though on the other hand this is
/super/ ugly.
This shouldn't matter either way - we don't expose it in the creative
menu, and there's no recipes for it. This should shut up a log message
though. Fixes#305.