2015-08-08 13:57:52 +00:00
|
|
|
// Hyperbolic Rogue
|
2018-02-08 23:40:26 +00:00
|
|
|
// This file contains hyperbolic points and matrices.
|
|
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
2015-08-08 13:57:52 +00:00
|
|
|
|
2018-06-10 23:58:31 +00:00
|
|
|
namespace hr {
|
|
|
|
|
2018-08-28 15:17:34 +00:00
|
|
|
eGeometry geometry;
|
|
|
|
eVariation variation;
|
2016-08-26 09:58:03 +00:00
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// hyperbolic points and matrices
|
|
|
|
|
|
|
|
// basic functions and types
|
|
|
|
//===========================
|
|
|
|
|
2016-08-26 09:58:03 +00:00
|
|
|
#ifdef SINHCOSH
|
2017-03-23 10:53:57 +00:00
|
|
|
// ld sinh(ld alpha) { return (exp(alpha) - exp(-alpha)) / 2; }
|
|
|
|
// ld cosh(ld alpha) { return (exp(alpha) + exp(-alpha)) / 2; }
|
|
|
|
|
|
|
|
/* ld inverse_sinh(ld z) {
|
|
|
|
return log(z+sqrt(1+z*z));
|
|
|
|
}
|
|
|
|
|
|
|
|
double inverse_cos(double c) {
|
|
|
|
double s = sqrt(1-c*c);
|
|
|
|
double r = atan(s/c);
|
|
|
|
if(r < 0) r = -r;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ld tanh(ld x) { return sinh(x) / cosh(x); }
|
|
|
|
ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#ifndef M_PI
|
|
|
|
#define M_PI 3.14159265358979
|
2016-08-26 09:58:03 +00:00
|
|
|
#endif
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
ld squar(ld x) { return x*x; }
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
int sig(int z) { return (sphere || z<DIM)?1:-1; }
|
2015-08-08 13:57:52 +00:00
|
|
|
|
2018-03-27 02:01:30 +00:00
|
|
|
int curvature() {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return 0;
|
|
|
|
case gcHyperbolic: return -1;
|
|
|
|
case gcSphere: return 1;
|
|
|
|
default: return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ld sin_auto(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return x;
|
|
|
|
case gcHyperbolic: return sinh(x);
|
|
|
|
case gcSphere: return sin(x);
|
|
|
|
default: return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ld asin_auto(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return x;
|
|
|
|
case gcHyperbolic: return asinh(x);
|
|
|
|
case gcSphere: return asin(x);
|
|
|
|
default: return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-21 10:18:33 +00:00
|
|
|
ld asin_auto_clamp(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return x;
|
|
|
|
case gcHyperbolic: return asinh(x);
|
2018-04-30 22:20:20 +00:00
|
|
|
case gcSphere: return x>1 ? M_PI/2 : x<-1 ? -M_PI/2 : std::isnan(x) ? 0 : asin(x);
|
2018-04-21 10:18:33 +00:00
|
|
|
default: return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-27 02:01:30 +00:00
|
|
|
ld cos_auto(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return 1;
|
|
|
|
case gcHyperbolic: return cosh(x);
|
|
|
|
case gcSphere: return cos(x);
|
|
|
|
default: return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-15 21:29:44 +00:00
|
|
|
ld tan_auto(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return x;
|
|
|
|
case gcHyperbolic: return tanh(x);
|
|
|
|
case gcSphere: return tan(x);
|
|
|
|
default: return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ld atan_auto(ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return x;
|
|
|
|
case gcHyperbolic: return atanh(x);
|
|
|
|
case gcSphere: return atan(x);
|
|
|
|
default: return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ld atan2_auto(ld y, ld x) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid: return y/x;
|
|
|
|
case gcHyperbolic: return atanh(y/x);
|
|
|
|
case gcSphere: return atan2(y, x);
|
|
|
|
default: return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// hyperbolic point:
|
|
|
|
//===================
|
|
|
|
|
|
|
|
// we represent the points on the hyperbolic plane
|
|
|
|
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
|
|
|
|
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
hyperpoint hpxy(ld x, ld y DC(, ld z)) {
|
|
|
|
return hpxyz(x,y,DC(z,) euclid ? 1 : sphere ? sqrt(1-x*x-y*y D3(-z*z)) : sqrt(1+x*x+y*y D3(+z*z)));
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// center of the pseudosphere
|
2019-02-17 17:47:19 +00:00
|
|
|
const hyperpoint Hypc(0,0,0 DC(,0));
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
// origin of the hyperbolic plane
|
2019-02-17 17:47:19 +00:00
|
|
|
const hyperpoint C0(0,0 DC(,0) ,1);
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
// a point (I hope this number needs no comments ;) )
|
2019-02-17 17:47:19 +00:00
|
|
|
const hyperpoint Cx1(1,0 DC(,0) ,1.41421356237);
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
// this function returns approximate square of distance between two points
|
|
|
|
// (in the spherical analogy, this would be the distance in the 3D space,
|
|
|
|
// through the interior, not on the surface)
|
|
|
|
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
bool zero2(hyperpoint h) { return h[0] == 0 && h[1] == 0 D3(&& h[2] == 0); }
|
2017-12-27 09:52:54 +00:00
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
bool zero3(hyperpoint h) { return h[0] == 0 && h[1] == 0 && h[2] == 0 D3(&& h[3] == 0); }
|
2017-12-27 09:52:54 +00:00
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
ld intval(const hyperpoint &h1, const hyperpoint &h2) {
|
2019-02-17 17:47:19 +00:00
|
|
|
ld res = 0;
|
|
|
|
for(int i=0; i<MDIM; i++) res += squar(h1[i] - h2[i]) * sig(i);
|
2017-05-31 16:33:50 +00:00
|
|
|
if(elliptic) {
|
2019-02-17 17:47:19 +00:00
|
|
|
ld res2 = 0;
|
|
|
|
for(int i=0; i<MDIM; i++) res2 += squar(h1[i] + h2[i]) * sig(i);
|
|
|
|
return min(res, res2);
|
2017-05-31 16:33:50 +00:00
|
|
|
}
|
2019-02-17 17:47:19 +00:00
|
|
|
return res;
|
2017-03-23 10:53:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ld intvalxy(const hyperpoint &h1, const hyperpoint &h2) {
|
2019-02-17 17:47:19 +00:00
|
|
|
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) D3(+ squar(h1[2]-h2[2]));
|
2017-03-23 10:53:57 +00:00
|
|
|
}
|
|
|
|
|
2017-12-25 22:47:57 +00:00
|
|
|
ld intvalxyz(const hyperpoint &h1, const hyperpoint &h2) {
|
2019-02-17 17:47:19 +00:00
|
|
|
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) + squar(h1[2]-h2[2]) D3(+ squar(h1[3]-h2[3]));
|
2017-12-25 22:47:57 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
ld sqhypot2(const hyperpoint& h) {
|
|
|
|
return h[0]*h[0]+h[1]*h[1] D3(+h[2]*h[2]);
|
2017-12-27 09:52:54 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
ld sqhypot3(const hyperpoint& h) {
|
|
|
|
return h[0]*h[0]+h[1]*h[1]+h[2]*h[2] D3(+h[3]*h[3]);
|
2017-12-27 05:31:47 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
ld hypot2(const hyperpoint& h) {
|
|
|
|
return sqrt(sqhypot2(h));
|
2017-12-27 09:52:54 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
ld hypot3(const hyperpoint& h) {
|
|
|
|
return sqrt(sqhypot3(h));
|
2017-12-27 09:52:54 +00:00
|
|
|
}
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
ld zlevel(const hyperpoint &h) {
|
2019-02-17 17:47:19 +00:00
|
|
|
if(euclid) return h[DIM];
|
2017-03-23 10:53:57 +00:00
|
|
|
else if(sphere) return sqrt(intval(h, Hypc));
|
2019-02-17 17:47:19 +00:00
|
|
|
else return (h[DIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
2018-03-27 02:01:30 +00:00
|
|
|
ld hypot_auto(ld x, ld y) {
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid:
|
|
|
|
return hypot(x, y);
|
|
|
|
case gcHyperbolic:
|
|
|
|
return acosh(cosh(x) * cosh(y));
|
|
|
|
case gcSphere:
|
|
|
|
return acos(cos(x) * cos(y));
|
|
|
|
default:
|
|
|
|
return hypot(x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-03 23:19:21 +00:00
|
|
|
// move H back to the sphere/hyperboloid/plane
|
|
|
|
hyperpoint normalize(hyperpoint H) {
|
2018-05-20 13:30:43 +00:00
|
|
|
ld Z = zlevel(H);
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int c=0; c<MDIM; c++) H[c] /= Z;
|
2018-04-03 23:19:21 +00:00
|
|
|
return H;
|
|
|
|
}
|
|
|
|
|
|
|
|
// get the center of the line segment from H1 to H2
|
|
|
|
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
|
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
return normalize(H1 + H2);
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
// like mid, but take 3D into account
|
|
|
|
hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
|
2018-04-03 23:19:21 +00:00
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
hyperpoint H3 = H1 + H2;
|
2016-08-26 09:58:03 +00:00
|
|
|
|
|
|
|
ld Z = 2;
|
|
|
|
|
2018-04-03 23:19:21 +00:00
|
|
|
if(!euclid) Z = zlevel(H3) * 2 / (zlevel(H1) + zlevel(H2));
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int c=0; c<MDIM; c++) H3[c] /= Z;
|
2016-08-26 09:58:03 +00:00
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
return H3;
|
2016-08-26 09:58:03 +00:00
|
|
|
}
|
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// matrices
|
|
|
|
//==========
|
|
|
|
|
|
|
|
// matrices represent isometries of the hyperbolic plane
|
|
|
|
// (just like isometries of the sphere are represented by rotation matrices)
|
|
|
|
|
|
|
|
// rotate by alpha degrees
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix cspin(int a, int b, ld alpha) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
T[a][a] = +cos(alpha); T[a][b] = +sin(alpha);
|
|
|
|
T[b][a] = -sin(alpha); T[b][b] = +cos(alpha);
|
2015-08-08 13:57:52 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix spin(ld alpha) { return cspin(0, 1, alpha); }
|
|
|
|
|
|
|
|
transmatrix eupush(ld x, ld y DC(, ld z)) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
T[0][DIM] = x;
|
|
|
|
T[1][DIM] = y;
|
|
|
|
D3( T[2][DIM] = z );
|
2015-08-08 13:57:52 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2017-12-14 01:53:29 +00:00
|
|
|
transmatrix eupush(hyperpoint h) {
|
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<DIM; i++) T[i][DIM] = h[i];
|
2017-12-14 01:53:29 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
|
|
|
transmatrix euscalezoom(hyperpoint h) {
|
|
|
|
transmatrix T = Id;
|
|
|
|
T[0][0] = h[0];
|
|
|
|
T[0][1] = -h[1];
|
|
|
|
T[1][0] = h[1];
|
|
|
|
T[1][1] = h[0];
|
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
|
|
|
transmatrix euaffine(hyperpoint h) {
|
|
|
|
transmatrix T = Id;
|
2018-01-03 00:05:03 +00:00
|
|
|
T[0][1] = h[0];
|
|
|
|
T[1][1] = exp(h[1]);
|
2017-12-14 01:53:29 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix cpush(int cid, ld alpha) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
T[DIM][DIM] = T[cid][cid] = cos_auto(alpha);
|
|
|
|
T[cid][DIM] = sin_auto(alpha);
|
|
|
|
T[DIM][cid] = -curvature() * sin_auto(alpha);
|
2015-08-08 13:57:52 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
// push alpha units to the right
|
|
|
|
transmatrix xpush(ld alpha) { return cpush(0, alpha); }
|
2017-03-23 10:53:57 +00:00
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
inline hyperpoint cpush0(int c, ld x) {
|
|
|
|
hyperpoint h = Hypc;
|
|
|
|
h[DIM] = cos_auto(x);
|
|
|
|
h[c] = sin_auto(x);
|
2018-11-08 18:39:55 +00:00
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
inline hyperpoint xpush0(ld x) { return cpush0(0, x); }
|
|
|
|
|
|
|
|
inline hyperpoint ypush0(ld x) { return cpush0(1, x); }
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
inline hyperpoint xspinpush0(ld alpha, ld x) {
|
2019-02-17 17:47:19 +00:00
|
|
|
hyperpoint h = Hypc;
|
|
|
|
h[DIM] = cos_auto(x);
|
|
|
|
h[0] = sin_auto(x) * cos(alpha);
|
|
|
|
h[1] = sin_auto(x) * -sin(alpha);
|
2017-03-23 10:53:57 +00:00
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// push alpha units vertically
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix ypush(ld alpha) { return cpush(1, alpha); }
|
|
|
|
|
|
|
|
transmatrix parabolic1(ld u DC(, ld v)) {
|
|
|
|
if(euclid)
|
|
|
|
return ypush(u);
|
2017-03-23 10:53:57 +00:00
|
|
|
else {
|
2019-02-17 17:47:19 +00:00
|
|
|
ld diag = (u*u D3(+v*v))/2;
|
|
|
|
#if DIM==2
|
|
|
|
return transmatrix {{{-diag+1, u, diag}, {-u, 1, u}, {-diag, u, diag+1}}};
|
|
|
|
#else
|
|
|
|
return transmatrix {{{-diag+1, u, v, diag}, {-u, 1, 0, u}, {-v, 0, 1, v}, {-diag, u, v, diag+1}}};
|
|
|
|
#endif
|
2017-03-23 10:53:57 +00:00
|
|
|
}
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix spintoc(const hyperpoint& H, int t, int f) {
|
|
|
|
transmatrix T = Id;
|
|
|
|
ld R = hypot(H[f], H[t]);
|
|
|
|
if(R >= 1e-12) {
|
|
|
|
T[t][t] = +H[t]/R; T[t][f] = +H[f]/R;
|
|
|
|
T[f][t] = -H[f]/R; T[f][f] = +H[t]/R;
|
|
|
|
}
|
|
|
|
return T;
|
2018-11-25 22:36:50 +00:00
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix rspintoc(const hyperpoint& H, int t, int f) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
ld R = hypot(H[f], H[t]);
|
2015-08-08 13:57:52 +00:00
|
|
|
if(R >= 1e-12) {
|
2019-02-17 17:47:19 +00:00
|
|
|
T[t][t] = +H[t]/R; T[t][f] = -H[f]/R;
|
|
|
|
T[f][t] = +H[f]/R; T[f][f] = +H[t]/R;
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
// rotate the hyperbolic plane around C0 such that H[1] == 0 and H[0] >= 0
|
|
|
|
transmatrix spintox(const hyperpoint& H) {
|
|
|
|
#if DIM==2
|
|
|
|
return spintoc(H, 0, 1);
|
|
|
|
#else
|
|
|
|
transmatrix T1 = spintoc(H, 0, 1);
|
|
|
|
return spintoc(T1*H, 0, 2) * T1;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2018-04-03 21:39:18 +00:00
|
|
|
void set_column(transmatrix& T, int i, const hyperpoint& H) {
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int j=0; j<MDIM; j++)
|
2018-04-03 21:39:18 +00:00
|
|
|
T[j][i] = H[j];
|
|
|
|
}
|
|
|
|
|
2018-04-03 23:19:21 +00:00
|
|
|
transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
|
|
|
|
transmatrix T;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++)
|
2018-04-03 23:19:21 +00:00
|
|
|
T[i][0] = h1[i],
|
|
|
|
T[i][1] = h2[i],
|
2019-02-17 17:47:19 +00:00
|
|
|
T[i][2] = h3[i]
|
|
|
|
DC(, T[i][3] = 0);
|
2018-04-03 23:19:21 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// reverse of spintox(H)
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix rspintox(const hyperpoint& H) {
|
|
|
|
#if DIM==2
|
|
|
|
return rspintoc(H, 0, 1);
|
|
|
|
#else
|
|
|
|
transmatrix T1 = spintoc(H, 0, 1);
|
|
|
|
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
|
|
|
|
#endif
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// for H such that H[1] == 0, this matrix pushes H to C0
|
2017-03-23 10:53:57 +00:00
|
|
|
transmatrix pushxto0(const hyperpoint& H) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
T[0][0] = +H[DIM]; T[0][DIM] = -H[0];
|
|
|
|
T[DIM][0] = curvature() * H[0]; T[DIM][DIM] = +H[DIM];
|
2015-08-08 13:57:52 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
|
|
|
// reverse of pushxto0(H)
|
2017-03-23 10:53:57 +00:00
|
|
|
transmatrix rpushxto0(const hyperpoint& H) {
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T = Id;
|
2019-02-17 17:47:19 +00:00
|
|
|
T[0][0] = +H[DIM]; T[0][DIM] = H[0];
|
|
|
|
T[DIM][0] = -curvature() * H[0]; T[DIM][DIM] = +H[DIM];
|
2015-08-08 13:57:52 +00:00
|
|
|
return T;
|
|
|
|
}
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
transmatrix ggpushxto0(const hyperpoint& H, ld co) {
|
|
|
|
if(euclid) return eupush(co * H[0], co * H[1] DC(, co * H[2]));
|
|
|
|
transmatrix res = Id;
|
|
|
|
if(sqhypot2(H) < 1e-12) return res;
|
|
|
|
ld fac = (H[DIM]-1) / sqhypot2(H);
|
|
|
|
for(int i=0; i<DIM; i++)
|
|
|
|
for(int j=0; j<DIM; j++)
|
|
|
|
res[i][j] += H[i] * H[j] * fac;
|
|
|
|
|
|
|
|
for(int d=0; d<DIM; d++)
|
|
|
|
res[d][DIM] = co * H[d],
|
|
|
|
res[DIM][d] = -curvature() * co * H[d];
|
|
|
|
res[DIM][DIM] = H[DIM];
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2015-08-08 13:57:52 +00:00
|
|
|
// generalization: H[1] can be non-zero
|
2017-03-23 10:53:57 +00:00
|
|
|
transmatrix gpushxto0(const hyperpoint& H) {
|
2019-02-17 17:47:19 +00:00
|
|
|
return ggpushxto0(H, -1);
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
transmatrix rgpushxto0(const hyperpoint& H) {
|
2019-02-17 17:47:19 +00:00
|
|
|
return ggpushxto0(H, 1);
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// fix the matrix T so that it is indeed an isometry
|
|
|
|
// (without using this, imprecision could accumulate)
|
|
|
|
|
|
|
|
void fixmatrix(transmatrix& T) {
|
2016-01-02 10:09:13 +00:00
|
|
|
if(euclid) {
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int x=0; x<DIM; x++) for(int y=0; y<=x; y++) {
|
2016-01-02 10:09:13 +00:00
|
|
|
ld dp = 0;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int z=0; z<DIM; z++) dp += T[z][x] * T[z][y];
|
2016-01-02 10:09:13 +00:00
|
|
|
|
|
|
|
if(y == x) dp = 1 - sqrt(1/dp);
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int z=0; z<DIM; z++) T[z][x] -= dp * T[z][y];
|
2016-01-02 10:09:13 +00:00
|
|
|
}
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int x=0; x<DIM; x++) T[2][x] = 0;
|
2016-01-02 10:09:13 +00:00
|
|
|
T[2][2] = 1;
|
|
|
|
}
|
2019-02-17 17:47:19 +00:00
|
|
|
else for(int x=0; x<MDIM; x++) for(int y=0; y<=x; y++) {
|
2015-08-08 13:57:52 +00:00
|
|
|
ld dp = 0;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int z=0; z<MDIM; z++) dp += T[z][x] * T[z][y] * sig(z);
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
if(y == x) dp = 1 - sqrt(sig(x)/dp);
|
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int z=0; z<MDIM; z++) T[z][x] -= dp * T[z][y];
|
2015-08-08 13:57:52 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// show the matrix on screen
|
|
|
|
|
2017-07-22 23:33:27 +00:00
|
|
|
ld det(const transmatrix& T) {
|
2019-02-17 17:47:19 +00:00
|
|
|
#if DIM == 3
|
2015-08-08 13:57:52 +00:00
|
|
|
ld det = 0;
|
|
|
|
for(int i=0; i<3; i++)
|
|
|
|
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
|
|
|
for(int i=0; i<3; i++)
|
|
|
|
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
2019-02-17 17:47:19 +00:00
|
|
|
#else
|
|
|
|
ld det = 1;
|
|
|
|
transmatrix M = T;
|
|
|
|
for(int a=0; a<MDIM; a++) {
|
|
|
|
for(int b=a; b<=DIM; b++)
|
|
|
|
if(M[b][a]) {
|
|
|
|
if(b != a)
|
|
|
|
for(int c=a; c<MDIM; c++) tie(M[b][c], M[a][c]) = make_pair(-M[a][c], M[b][c]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(!M[a][a]) return 0;
|
|
|
|
for(int b=a+1; b<=DIM; b++) {
|
|
|
|
ld co = -M[b][a] / M[a][a];
|
|
|
|
for(int c=a; c<MDIM; c++) M[b][c] += M[a][c] * co;
|
|
|
|
}
|
|
|
|
det *= M[a][a];
|
|
|
|
}
|
|
|
|
#endif
|
2017-07-22 23:33:27 +00:00
|
|
|
return det;
|
|
|
|
}
|
2018-08-19 20:54:11 +00:00
|
|
|
|
|
|
|
void inverse_error(const transmatrix& T) {
|
2018-11-24 16:01:49 +00:00
|
|
|
println(hlog, "Warning: inverting a singular matrix: ", T);
|
2018-08-19 20:54:11 +00:00
|
|
|
}
|
|
|
|
|
2017-07-22 23:33:27 +00:00
|
|
|
transmatrix inverse(const transmatrix& T) {
|
|
|
|
profile_start(7);
|
2015-08-08 13:57:52 +00:00
|
|
|
|
2019-02-17 17:47:19 +00:00
|
|
|
#if DIM == 3
|
2017-07-22 23:33:27 +00:00
|
|
|
ld d = det(T);
|
2015-08-08 13:57:52 +00:00
|
|
|
transmatrix T2;
|
2018-08-19 20:54:11 +00:00
|
|
|
if(d == 0) {
|
|
|
|
inverse_error(T);
|
|
|
|
return Id;
|
2018-01-13 18:21:08 +00:00
|
|
|
}
|
2015-08-08 13:57:52 +00:00
|
|
|
|
|
|
|
for(int i=0; i<3; i++)
|
|
|
|
for(int j=0; j<3; j++)
|
2017-07-22 23:33:27 +00:00
|
|
|
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / d;
|
2019-02-17 17:47:19 +00:00
|
|
|
|
|
|
|
#else
|
|
|
|
transmatrix T1 = T;
|
|
|
|
transmatrix T2 = Id;
|
|
|
|
|
|
|
|
for(int a=0; a<MDIM; a++) {
|
|
|
|
for(int b=a; b<=DIM; b++)
|
|
|
|
if(T1[b][a]) {
|
|
|
|
if(b != a)
|
|
|
|
for(int c=0; c<MDIM; c++)
|
|
|
|
tie(T1[b][c], T1[a][c]) = make_pair(T1[a][c], T1[b][c]),
|
|
|
|
tie(T2[b][c], T2[a][c]) = make_pair(T2[a][c], T2[b][c]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(!T1[a][a]) { inverse_error(T); return Id; }
|
|
|
|
for(int b=a+1; b<=DIM; b++) {
|
|
|
|
ld co = -T1[b][a] / T1[a][a];
|
|
|
|
for(int c=0; c<MDIM; c++) T1[b][c] += T1[a][c] * co, T2[b][c] += T2[a][c] * co;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int a=MDIM-1; a>=0; a--) {
|
|
|
|
for(int b=0; b<a; b++) {
|
|
|
|
ld co = -T1[b][a] / T1[a][a];
|
|
|
|
for(int c=0; c<MDIM; c++) T1[b][c] += T1[a][c] * co, T2[b][c] += T2[a][c] * co;
|
|
|
|
}
|
|
|
|
ld co = 1 / T1[a][a];
|
|
|
|
for(int c=0; c<MDIM; c++) T1[a][c] *= co, T2[a][c] *= co;
|
|
|
|
}
|
|
|
|
#endif
|
2015-08-08 13:57:52 +00:00
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
profile_stop(7);
|
2015-08-08 13:57:52 +00:00
|
|
|
return T2;
|
|
|
|
}
|
2016-08-26 09:58:03 +00:00
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
// distance between mh and 0
|
|
|
|
double hdist0(const hyperpoint& mh) {
|
2018-02-27 18:21:43 +00:00
|
|
|
switch(cgclass) {
|
|
|
|
case gcHyperbolic:
|
2019-02-17 17:47:19 +00:00
|
|
|
if(mh[DIM] < 1) return 0;
|
|
|
|
return acosh(mh[DIM]);
|
2018-02-27 18:21:43 +00:00
|
|
|
case gcEuclid: {
|
2019-02-17 17:47:19 +00:00
|
|
|
ld d = sqhypot2(mh);
|
2018-02-27 18:21:43 +00:00
|
|
|
return d;
|
|
|
|
}
|
|
|
|
case gcSphere: {
|
2019-02-17 17:47:19 +00:00
|
|
|
ld res = mh[DIM] >= 1 ? 0 : mh[DIM] <= -1 ? M_PI : acos(mh[DIM]);
|
2018-02-27 18:21:43 +00:00
|
|
|
if(elliptic && res > M_PI/2) res = M_PI-res;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
return 0;
|
2017-05-31 16:33:50 +00:00
|
|
|
}
|
2017-03-23 10:53:57 +00:00
|
|
|
}
|
|
|
|
|
2018-01-04 11:25:02 +00:00
|
|
|
ld circlelength(ld r) {
|
2018-02-27 18:21:43 +00:00
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid:
|
|
|
|
return 2 * M_PI * r;
|
|
|
|
case gcHyperbolic:
|
|
|
|
return 2 * M_PI * sinh(r);
|
|
|
|
case gcSphere:
|
|
|
|
return 2 * M_PI * sin(r);
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
2018-01-04 11:25:02 +00:00
|
|
|
}
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
// distance between two points
|
|
|
|
double hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
|
|
|
return hdist0(gpushxto0(h1) * h2);
|
2018-02-27 18:21:43 +00:00
|
|
|
ld iv = intval(h1, h2);
|
|
|
|
switch(cgclass) {
|
|
|
|
case gcEuclid:
|
|
|
|
return sqrt(iv);
|
|
|
|
case gcHyperbolic:
|
|
|
|
return 2 * asinh(sqrt(iv) / 2);
|
|
|
|
case gcSphere:
|
2018-05-01 17:35:09 +00:00
|
|
|
return 2 * asin_auto_clamp(sqrt(iv) / 2);
|
2018-02-27 18:21:43 +00:00
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
2016-08-26 09:58:03 +00:00
|
|
|
}
|
|
|
|
|
2017-03-23 10:53:57 +00:00
|
|
|
hyperpoint mscale(const hyperpoint& t, double fac) {
|
|
|
|
hyperpoint res;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++)
|
2017-03-23 10:53:57 +00:00
|
|
|
res[i] = t[i] * fac;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
transmatrix mscale(const transmatrix& t, double fac) {
|
|
|
|
transmatrix res;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++)
|
2017-03-23 10:53:57 +00:00
|
|
|
res[i][j] = t[i][j] * fac;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
transmatrix xyscale(const transmatrix& t, double fac) {
|
|
|
|
transmatrix res;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<DIM; j++)
|
2017-03-23 10:53:57 +00:00
|
|
|
res[i][j] = t[i][j] * fac;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
|
|
|
|
transmatrix res;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<DIM; j++)
|
2017-03-23 10:53:57 +00:00
|
|
|
res[i][j] = t[i][j] * fac;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++)
|
|
|
|
res[i][DIM] = t[i][DIM] * facz;
|
2017-03-23 10:53:57 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
// double downspin_zivory;
|
|
|
|
|
|
|
|
transmatrix mzscale(const transmatrix& t, double fac) {
|
|
|
|
// take only the spin
|
|
|
|
transmatrix tcentered = gpushxto0(tC0(t)) * t;
|
|
|
|
// tcentered = tcentered * spin(downspin_zivory);
|
|
|
|
fac -= 1;
|
|
|
|
transmatrix res = t * inverse(tcentered) * ypush(-fac) * tcentered;
|
|
|
|
fac *= .2;
|
|
|
|
fac += 1;
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++)
|
2017-03-23 10:53:57 +00:00
|
|
|
res[i][j] = res[i][j] * fac;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2017-07-10 18:47:38 +00:00
|
|
|
transmatrix pushone() { return euclid ? eupush(1, 0) : xpush(sphere?.5 : 1); }
|
|
|
|
|
2017-12-22 20:23:17 +00:00
|
|
|
bool operator == (hyperpoint h1, hyperpoint h2) {
|
2019-02-17 17:47:19 +00:00
|
|
|
for(int i=0; i<MDIM; i++) if(h1[i] != h2[i]) return false;
|
|
|
|
return true;
|
2017-12-22 20:23:17 +00:00
|
|
|
}
|
2017-12-28 17:39:49 +00:00
|
|
|
|
|
|
|
// rotation matrix in R^3
|
|
|
|
|
|
|
|
transmatrix rotmatrix(double rotation, int c0, int c1) {
|
|
|
|
transmatrix t = Id;
|
|
|
|
t[c0][c0] = cos(rotation);
|
|
|
|
t[c1][c1] = cos(rotation);
|
|
|
|
t[c0][c1] = sin(rotation);
|
|
|
|
t[c1][c0] = -sin(rotation);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
2018-08-04 20:35:15 +00:00
|
|
|
hyperpoint mid3(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
|
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
return mid(h1+h2+h3, h1+h2+h3);
|
|
|
|
}
|
|
|
|
|
|
|
|
hyperpoint mid_at(hyperpoint h1, hyperpoint h2, ld v) {
|
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
hyperpoint h = h1 * (1-v) + h2 * v;
|
|
|
|
return mid(h, h);
|
|
|
|
}
|
|
|
|
|
2018-08-05 03:07:34 +00:00
|
|
|
hyperpoint mid_at_actual(hyperpoint h, ld v) {
|
|
|
|
using namespace hyperpoint_vec;
|
2018-08-19 14:28:36 +00:00
|
|
|
return rspintox(h) * xpush0(hdist0(h) * v);
|
2018-08-05 03:07:34 +00:00
|
|
|
}
|
|
|
|
|
2018-06-10 23:58:31 +00:00
|
|
|
}
|