1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 05:00:35 +00:00
gnss-sdr/tests/unit-tests/signal-processing-blocks/observables/hybrid_observables_test_fpga.cc

2562 lines
106 KiB
C++
Raw Normal View History

/*!
* \file hybrid_observables_test_fpga.cc
* \brief This class implements a tracking test for Galileo_E5a_DLL_PLL_Tracking
* implementation based on some input parameters.
* \authors <ul>
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
* <li> Javier Arribas, 2018. jarribas(at)cttc.es
* </ul>
*
*
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2012-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "GPS_L5.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "acquisition_msg_rx.h"
2019-12-21 12:25:17 +00:00
#include "fpga_switch.h"
#include "galileo_e1_pcps_ambiguous_acquisition_fpga.h"
#include "galileo_e5a_pcps_acquisition_fpga.h"
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "gnss_satellite.h"
2022-12-19 19:55:06 +00:00
#include "gnss_sdr_fpga_sample_counter.h"
#include "gnss_synchro.h"
#include "gnuplot_i.h"
2019-12-21 12:25:17 +00:00
#include "gps_l1_ca_dll_pll_tracking_fpga.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "gps_l5i_pcps_acquisition_fpga.h"
#include "hybrid_observables.h"
#include "in_memory_configuration.h"
#include "observable_tests_flags.h"
#include "observables_dump_reader.h"
#include "signal_generator_flags.h"
#include "telemetry_decoder_interface.h"
#include "test_flags.h"
#include "tlm_dump_reader.h"
#include "tracking_dump_reader.h"
#include "tracking_interface.h"
#include "tracking_tests_flags.h"
#include "tracking_true_obs_reader.h"
#include "true_observables_reader.h"
#include <armadillo>
#include <boost/lexical_cast.hpp>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/filter/firdes.h>
#include <gnuradio/top_block.h>
#include <gtest/gtest.h>
#include <matio.h>
#include <pmt/pmt.h>
#include <chrono>
#include <cmath>
#include <exception>
2022-08-26 07:14:58 +00:00
#include <iomanip>
2019-12-21 12:25:17 +00:00
#include <pthread.h>
#include <unistd.h>
#include <utility>
#if GNSSTK_USES_GPSTK_NAMESPACE
2022-07-10 17:19:37 +00:00
#include <gpstk/GPSWeekSecond.hpp>
#include <gpstk/Rinex3ObsBase.hpp>
#include <gpstk/Rinex3ObsData.hpp>
#include <gpstk/Rinex3ObsHeader.hpp>
#include <gpstk/Rinex3ObsStream.hpp>
#include <gpstk/RinexUtilities.hpp>
namespace gnsstk = gpstk;
#else
2022-07-10 17:19:37 +00:00
#include <gnsstk/GPSWeekSecond.hpp>
#include <gnsstk/Rinex3ObsBase.hpp>
#include <gnsstk/Rinex3ObsData.hpp>
#include <gnsstk/Rinex3ObsHeader.hpp>
#include <gnsstk/Rinex3ObsStream.hpp>
#include <gnsstk/RinexUtilities.hpp>
#endif
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
#ifdef GR_GREATER_38
#include <gnuradio/filter/fir_filter_blk.h>
#else
#include <gnuradio/filter/fir_filter_ccf.h>
#endif
#if PMT_USES_BOOST_ANY
namespace wht = boost;
#else
namespace wht = std;
#endif
class HybridObservablesTest_msg_rx_Fpga;
using HybridObservablesTest_msg_rx_Fpga_sptr = gnss_shared_ptr<HybridObservablesTest_msg_rx_Fpga>;
HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make();
class HybridObservablesTest_msg_rx_Fpga : public gr::block
{
private:
friend HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make();
void msg_handler_channel_events(const pmt::pmt_t msg);
HybridObservablesTest_msg_rx_Fpga();
public:
int rx_message;
~HybridObservablesTest_msg_rx_Fpga(); //!< Default destructor
};
2020-05-18 20:50:34 +00:00
HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make()
{
return HybridObservablesTest_msg_rx_Fpga_sptr(new HybridObservablesTest_msg_rx_Fpga());
}
2020-05-18 20:50:34 +00:00
void HybridObservablesTest_msg_rx_Fpga::msg_handler_channel_events(const pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message;
}
catch (const wht::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_channel_events Bad any_cast: " << e.what();
rx_message = 0;
}
}
2020-05-18 20:50:34 +00:00
HybridObservablesTest_msg_rx_Fpga::HybridObservablesTest_msg_rx_Fpga() : gr::block("HybridObservablesTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](auto&& PH1) { msg_handler_channel_events(PH1); });
#else
#if USE_BOOST_BIND_PLACEHOLDERS
boost::bind(&HybridObservablesTest_msg_rx_Fpga::msg_handler_channel_events, this, boost::placeholders::_1));
2020-05-18 20:50:34 +00:00
#else
boost::bind(&HybridObservablesTest_msg_rx_Fpga::msg_handler_channel_events, this, _1));
2020-05-18 20:50:34 +00:00
#endif
#endif
rx_message = 0;
}
2020-05-18 20:50:34 +00:00
HybridObservablesTest_msg_rx_Fpga::~HybridObservablesTest_msg_rx_Fpga() = default;
class HybridObservablesTest_tlm_msg_rx_Fpga;
2020-05-18 20:50:34 +00:00
using HybridObservablesTest_tlm_msg_rx_Fpga_sptr = std::shared_ptr<HybridObservablesTest_tlm_msg_rx_Fpga>;
2020-05-18 20:50:34 +00:00
HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make();
2020-05-18 20:50:34 +00:00
class HybridObservablesTest_tlm_msg_rx_Fpga : public gr::block
{
private:
friend HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make();
void msg_handler_channel_events(const pmt::pmt_t msg);
HybridObservablesTest_tlm_msg_rx_Fpga();
public:
int rx_message;
~HybridObservablesTest_tlm_msg_rx_Fpga(); //!< Default destructor
};
2020-05-18 20:50:34 +00:00
HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make()
{
return HybridObservablesTest_tlm_msg_rx_Fpga_sptr(new HybridObservablesTest_tlm_msg_rx_Fpga());
}
2020-05-18 20:50:34 +00:00
void HybridObservablesTest_tlm_msg_rx_Fpga::msg_handler_channel_events(const pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message;
}
catch (const wht::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_channel_events Bad any_cast: " << e.what();
rx_message = 0;
}
}
2020-05-18 20:50:34 +00:00
HybridObservablesTest_tlm_msg_rx_Fpga::HybridObservablesTest_tlm_msg_rx_Fpga() : gr::block("HybridObservablesTest_tlm_msg_rx_Fpga", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&HybridObservablesTest_tlm_msg_rx_Fpga::msg_handler_channel_events, this, boost::placeholders::_1));
rx_message = 0;
}
2020-05-18 20:50:34 +00:00
HybridObservablesTest_tlm_msg_rx_Fpga::~HybridObservablesTest_tlm_msg_rx_Fpga() = default;
2020-05-18 20:50:34 +00:00
class HybridObservablesTestFpga : public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
#if USE_GLOG_AND_GFLAGS
std::string implementation = FLAGS_trk_test_implementation;
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
#else
std::string implementation = absl::GetFlag(FLAGS_trk_test_implementation);
const int baseband_sampling_freq = absl::GetFlag(FLAGS_fs_gen_sps);
std::string filename_rinex_obs = absl::GetFlag(FLAGS_filename_rinex_obs);
std::string filename_raw_data = absl::GetFlag(FLAGS_filename_raw_data);
#endif
int configure_generator();
int generate_signal();
bool save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename);
void check_results_carrier_phase(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
const std::string& data_title);
void check_results_carrier_phase_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title);
void check_results_carrier_doppler(arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
const std::string& data_title);
void check_results_carrier_doppler_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title);
void check_results_code_pseudorange(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title);
void check_results_duplicated_satellite(
arma::mat& measured_sat1,
arma::mat& measured_sat2,
int ch_id,
const std::string& data_title);
HybridObservablesTestFpga()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
}
~HybridObservablesTestFpga() = default;
bool ReadRinexObs(std::vector<arma::mat>* obs_vec, Gnss_Synchro gnss);
bool acquire_signal();
void configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols,
uint32_t smoother_length,
bool high_dyn);
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro_master;
std::vector<Gnss_Synchro> gnss_synchro_vec;
size_t item_size;
pthread_mutex_t mutex_obs_test = PTHREAD_MUTEX_INITIALIZER;
static const int32_t TEST_OBS_SKIP_SAMPLES = 1024;
static constexpr float DMA_SIGNAL_SCALING_FACTOR = 8.0;
};
2020-05-18 20:50:34 +00:00
int HybridObservablesTestFpga::configure_generator()
{
#if USE_GLOG_AND_GFLAGS
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
#else
// Configure signal generator
generator_binary = absl::GetFlag(FLAGS_generator_binary);
p1 = std::string("-rinex_nav_file=") + absl::GetFlag(FLAGS_rinex_nav_file);
if (absl::GetFlag(FLAGS_dynamic_position).empty())
{
p2 = std::string("-static_position=") + absl::GetFlag(FLAGS_static_position) + std::string(",") + std::to_string(absl::GetFlag(FLAGS_duration) * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(absl::GetFlag(FLAGS_dynamic_position));
}
p3 = std::string("-rinex_obs_file=") + absl::GetFlag(FLAGS_filename_rinex_obs); // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + absl::GetFlag(FLAGS_filename_raw_data); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
#endif
return 0;
}
int HybridObservablesTestFpga::generate_signal()
{
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], nullptr};
int pid;
if ((pid = fork()) == -1)
2019-12-30 17:43:46 +00:00
{
perror("fork err");
}
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv err.\n";
std::terminate();
}
waitpid(pid, &child_status, 0);
std::cout << "Signal and Observables RINEX and RAW files created.\n";
return 0;
}
2020-05-18 20:50:34 +00:00
struct DMA_handler_args_obs_test
{
std::string file;
int32_t nsamples_tx;
int32_t skip_used_samples;
unsigned int freq_band; // 0 for GPS L1/ Galileo E1, 1 for GPS L5/Galileo E5
float scaling_factor;
};
2020-05-18 20:50:34 +00:00
struct acquisition_handler_args_obs_test
{
2019-12-30 17:43:46 +00:00
std::shared_ptr<AcquisitionInterface> acquisition;
};
2020-05-18 20:50:34 +00:00
void* handler_acquisition_obs_test(void* arguments)
{
2019-12-30 17:43:46 +00:00
// the acquisition is a blocking function so we have to
// create a thread
auto* args = (struct acquisition_handler_args_obs_test*)arguments;
args->acquisition->reset();
return nullptr;
}
2020-05-18 20:50:34 +00:00
void* handler_DMA_obs_test(void* arguments)
{
2019-12-30 17:43:46 +00:00
const int MAX_INPUT_SAMPLES_TOTAL = 16384;
2019-12-30 17:43:46 +00:00
auto* args = (struct DMA_handler_args_obs_test*)arguments;
2019-12-30 17:43:46 +00:00
std::string Filename = args->file; // input filename
int32_t skip_used_samples = args->skip_used_samples;
int32_t nsamples_tx = args->nsamples_tx;
std::vector<int8_t> input_samples(MAX_INPUT_SAMPLES_TOTAL * 2);
std::vector<int8_t> input_samples_dma(MAX_INPUT_SAMPLES_TOTAL * 2 * 2);
bool file_completed = false;
int32_t nsamples_remaining;
int32_t nsamples_block_size;
unsigned int dma_index;
int tx_fd; // DMA descriptor
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
infile.open(Filename, std::ios::binary);
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception opening file " << Filename << '\n';
return nullptr;
}
// *************************************************************************
// Open DMA device
// *************************************************************************
tx_fd = open("/dev/loop_tx", O_WRONLY);
if (tx_fd < 0)
{
std::cout << "Cannot open loop device\n";
return nullptr;
}
// *************************************************************************
// Open input file
// *************************************************************************
#if USE_GLOG_AND_GFLAGS
uint32_t skip_samples = static_cast<uint32_t>(FLAGS_skip_samples);
#else
uint32_t skip_samples = static_cast<uint32_t>(absl::GetFlag(FLAGS_skip_samples));
#endif
2019-12-30 17:43:46 +00:00
if (skip_samples + skip_used_samples > 0)
{
try
{
infile.ignore((skip_samples + skip_used_samples) * 2);
}
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception reading file " << Filename << '\n';
2019-12-30 17:43:46 +00:00
}
}
nsamples_remaining = nsamples_tx;
nsamples_block_size = 0;
while (file_completed == false)
{
dma_index = 0;
if (nsamples_remaining > MAX_INPUT_SAMPLES_TOTAL)
2019-12-30 17:43:46 +00:00
{
nsamples_block_size = MAX_INPUT_SAMPLES_TOTAL;
}
else
2019-12-30 17:43:46 +00:00
{
nsamples_block_size = nsamples_remaining;
}
2019-12-30 17:43:46 +00:00
try
{
// 2 bytes per complex sample
infile.read(reinterpret_cast<char*>(input_samples.data()), nsamples_block_size * 2);
}
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception reading file " << Filename << '\n';
2019-12-30 17:43:46 +00:00
}
for (int index0 = 0; index0 < (nsamples_block_size * 2); index0 += 2)
{
if (args->freq_band == 0)
{
2019-12-30 17:43:46 +00:00
// channel 1 (queue 1) -> E5/L5
input_samples_dma[dma_index] = 0;
input_samples_dma[dma_index + 1] = 0;
// channel 0 (queue 0) -> E1/L1
input_samples_dma[dma_index + 2] = static_cast<int8_t>(input_samples[index0] * args->scaling_factor);
input_samples_dma[dma_index + 3] = static_cast<int8_t>(input_samples[index0 + 1] * args->scaling_factor);
}
2019-12-30 17:43:46 +00:00
else
{
2019-12-30 17:43:46 +00:00
// channel 1 (queue 1) -> E5/L5
input_samples_dma[dma_index] = static_cast<int8_t>(input_samples[index0] * args->scaling_factor);
input_samples_dma[dma_index + 1] = static_cast<int8_t>(input_samples[index0 + 1] * args->scaling_factor);
// channel 0 (queue 0) -> E1/L1
input_samples_dma[dma_index + 2] = 0;
input_samples_dma[dma_index + 3] = 0;
}
2019-12-30 17:43:46 +00:00
dma_index += 4;
}
// std::cout << "DMA: sending nsamples_block_size = " << nsamples_block_size << " samples\n";
2019-12-30 17:43:46 +00:00
if (write(tx_fd, input_samples_dma.data(), (int)(nsamples_block_size * 4)) != (int)(nsamples_block_size * 4))
{
std::cerr << "Error: DMA could not send all the required samples \n";
2019-12-30 17:43:46 +00:00
}
2019-12-30 17:43:46 +00:00
// Throttle the DMA
std::this_thread::sleep_for(std::chrono::milliseconds(1));
nsamples_remaining -= nsamples_block_size;
if (nsamples_remaining == 0)
{
file_completed = true;
}
}
try
{
infile.close();
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception closing files " << Filename << '\n';
}
try
2019-08-17 12:59:20 +00:00
{
2019-12-30 17:43:46 +00:00
close(tx_fd);
2019-08-17 12:59:20 +00:00
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception closing loop device \n";
}
2019-12-30 17:43:46 +00:00
return nullptr;
}
// When using the FPGA the acquisition class calls the states
// of the channel finite state machine directly. This is done
// in order to reduce the latency of the receiver when going
// from acquisition to tracking. In order to execute the
// acquisition in the unit tests we need to create a derived
// class of the channel finite state machine. Some of the states
// of the channel state machine are modified here, in order to
// simplify the instantiation of the acquisition class in the
// unit test.
2019-12-30 17:43:46 +00:00
class ChannelFsm_obs_test : public ChannelFsm
{
public:
2019-12-30 17:43:46 +00:00
bool Event_valid_acquisition() override
{
acquisition_successful = true;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_failed_acquisition_repeat() override
{
acquisition_successful = false;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_failed_acquisition_no_repeat() override
{
acquisition_successful = false;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_check_test_result()
{
return acquisition_successful;
}
2019-12-30 17:43:46 +00:00
void Event_clear_test_result()
{
acquisition_successful = false;
}
private:
2019-12-30 17:43:46 +00:00
bool acquisition_successful;
};
bool HybridObservablesTestFpga::acquire_signal()
{
pthread_t thread_DMA, thread_acquisition;
// 1. Setup GNU Radio flowgraph (file_source -> Acquisition_10m)
int SV_ID = 1; // initial sv id
// fsm
std::shared_ptr<ChannelFsm_obs_test> channel_fsm_;
channel_fsm_ = std::make_shared<ChannelFsm_obs_test>();
bool acquisition_successful;
// Satellite signal definition
Gnss_Synchro tmp_gnss_synchro;
tmp_gnss_synchro.Channel_ID = 0;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
std::shared_ptr<AcquisitionInterface> acquisition;
std::string System_and_Signal;
std::string signal;
struct DMA_handler_args_obs_test args;
struct acquisition_handler_args_obs_test args_acq;
#if USE_GLOG_AND_GFLAGS
std::string file = FLAGS_signal_file;
#else
std::string file = absl::GetFlag(FLAGS_signal_file);
#endif
2019-12-30 17:43:46 +00:00
args.file = file; // DMA file configuration
// instantiate the FPGA switch and set the
// switch position to DMA.
std::shared_ptr<Fpga_Switch> switch_fpga;
switch_fpga = std::make_shared<Fpga_Switch>();
2019-12-30 17:43:46 +00:00
switch_fpga->set_switch_position(0); // set switch position to DMA
// create the correspondign acquisition block according to the desired tracking signal
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'G';
signal = "1C";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L1 CA";
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 0; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'E';
signal = "1B";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E1B";
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 0; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'E';
signal = "5X";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E5a";
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 1; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'G';
signal = "L5";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L5I";
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 1; // frequency band on which the DMA has to transfer the samples
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
acquisition->set_gnss_synchro(&tmp_gnss_synchro);
acquisition->set_channel_fsm(channel_fsm_);
acquisition->set_channel(0);
#if USE_GLOG_AND_GFLAGS
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", FLAGS_external_signal_acquisition_doppler_max_hz));
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", FLAGS_external_signal_acquisition_doppler_step_hz));
acquisition->set_doppler_center(0);
acquisition->set_threshold(config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold));
#else
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", absl::GetFlag(FLAGS_external_signal_acquisition_doppler_max_hz)));
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", absl::GetFlag(FLAGS_external_signal_acquisition_doppler_step_hz)));
acquisition->set_doppler_center(0);
acquisition->set_threshold(config->property("Acquisition.threshold", absl::GetFlag(FLAGS_external_signal_acquisition_threshold)));
#endif
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds;
start = std::chrono::system_clock::now();
bool start_msg = true;
unsigned int MAX_PRN_IDX = 0;
switch (tmp_gnss_synchro.System)
{
case 'G':
MAX_PRN_IDX = 33;
break;
case 'E':
MAX_PRN_IDX = 37;
break;
default:
MAX_PRN_IDX = 33;
}
// number of samples that the DMA has to transfer
unsigned int nsamples_to_transfer;
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS)));
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS)));
}
else // (if (implementation.compare("GPS_L5_DLL_PLL_Tracking_FPGA") == 0))
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L5I_CODE_RATE_CPS / GPS_L5I_CODE_LENGTH_CHIPS)));
}
2019-01-31 14:36:11 +00:00
// set the scaling factor
args.scaling_factor = DMA_SIGNAL_SCALING_FACTOR;
for (unsigned int PRN = 1; PRN < MAX_PRN_IDX; PRN++)
{
tmp_gnss_synchro.PRN = PRN;
2019-01-31 14:36:11 +00:00
2019-12-30 17:43:46 +00:00
channel_fsm_->Event_clear_test_result();
acquisition->stop_acquisition(); // reset the whole system including the sample counters
acquisition->init();
acquisition->set_local_code();
2019-01-31 14:36:11 +00:00
if ((implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA") or (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA"))
{
2019-12-30 17:43:46 +00:00
// Skip the first TEST_OBS_SKIP_SAMPLES samples
args.skip_used_samples = 0;
2019-12-30 17:43:46 +00:00
args.nsamples_tx = TEST_OBS_SKIP_SAMPLES; // limit is between 645 and 650 samples
2019-01-31 14:36:11 +00:00
// create DMA child process
2019-08-18 10:54:16 +00:00
if (pthread_create(&thread_DMA, nullptr, handler_DMA_obs_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
2019-01-31 14:36:11 +00:00
pthread_join(thread_DMA, nullptr);
2019-01-31 14:36:11 +00:00
args.skip_used_samples = TEST_OBS_SKIP_SAMPLES;
}
else
{
args.skip_used_samples = 0;
}
2019-01-31 14:36:11 +00:00
// Configure the DMA to send the required samples to perform an acquisition
args.nsamples_tx = nsamples_to_transfer;
2019-01-31 14:36:11 +00:00
// run the acquisition. The acquisition must run in a separate thread because it is a blocking function
args_acq.acquisition = acquisition;
if (pthread_create(&thread_acquisition, nullptr, handler_acquisition_obs_test, reinterpret_cast<void*>(&args_acq)) < 0)
{
std::cout << "ERROR cannot create acquisition Process\n";
}
2019-01-31 14:36:11 +00:00
if (start_msg == true)
{
#if USE_GLOG_AND_GFLAGS
std::cout << "Reading external signal file: " << FLAGS_signal_file << '\n';
#else
std::cout << "Reading external signal file: " << absl::GetFlag(FLAGS_signal_file) << '\n';
#endif
std::cout << "Searching for " << System_and_Signal << " Satellites...\n";
std::cout << "[";
start_msg = false;
}
2019-01-31 14:36:11 +00:00
// wait to give time for the acquisition thread to set up the acquisition HW accelerator in the FPGA
usleep(1000000);
2019-01-31 14:36:11 +00:00
// create DMA child process
if (pthread_create(&thread_DMA, nullptr, handler_DMA_obs_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
// wait until the acquisition is finished
pthread_join(thread_acquisition, nullptr);
// wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr);
acquisition_successful = channel_fsm_->Event_check_test_result();
if (acquisition_successful)
{
std::cout << " " << PRN << " ";
gnss_synchro_vec.push_back(tmp_gnss_synchro);
}
else
{
std::cout << " . ";
}
2019-01-31 14:36:11 +00:00
std::cout.flush();
}
std::cout << "]\n";
std::cout << "-------------------------------------------\n";
for (auto& x : gnss_synchro_vec)
{
std::cout << "DETECTED SATELLITE " << System_and_Signal
<< " PRN: " << x.PRN
<< " with Doppler: " << x.Acq_doppler_hz
<< " [Hz], code phase: " << x.Acq_delay_samples
<< " [samples] at signal SampleStamp " << x.Acq_samplestamp_samples << "\n";
}
// report the elapsed time
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
std::cout << "Total signal acquisition run time "
<< elapsed_seconds.count()
<< " [seconds]\n";
if (!gnss_synchro_vec.empty())
{
return true;
}
else
{
return false;
}
}
void HybridObservablesTestFpga::configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols,
uint32_t smoother_length,
bool high_dyn)
{
config = std::make_shared<InMemoryConfiguration>();
if (high_dyn)
{
config->set_property("Tracking.high_dyn", "true");
}
else
{
config->set_property("Tracking.high_dyn", "false");
}
config->set_property("Tracking.implementation", implementation);
config->set_property("Tracking.pll_bw_hz", std::to_string(PLL_wide_bw_hz));
config->set_property("Tracking.dll_bw_hz", std::to_string(DLL_wide_bw_hz));
config->set_property("Tracking.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
config->set_property("Tracking.pll_bw_narrow_hz", std::to_string(PLL_narrow_bw_hz));
config->set_property("Tracking.dll_bw_narrow_hz", std::to_string(DLL_narrow_bw_hz));
#if USE_GLOG_AND_GFLAGS
config->set_property("Tracking.fll_bw_hz", std::to_string(FLAGS_fll_bw_hz));
config->set_property("Tracking.enable_fll_pull_in", FLAGS_enable_fll_pull_in ? "true" : "false");
config->set_property("Tracking.enable_fll_steady_state", FLAGS_enable_fll_steady_state ? "true" : "false");
#else
config->set_property("Tracking.fll_bw_hz", std::to_string(absl::GetFlag(FLAGS_fll_bw_hz)));
config->set_property("Tracking.enable_fll_pull_in", absl::GetFlag(FLAGS_enable_fll_pull_in) ? "true" : "false");
config->set_property("Tracking.enable_fll_steady_state", absl::GetFlag(FLAGS_enable_fll_steady_state) ? "true" : "false");
#endif
config->set_property("Tracking.smoother_length", std::to_string(smoother_length));
config->set_property("Tracking.dump", "true");
config->set_property("Tracking.dump_filename", "./tracking_ch_");
config->set_property("Observables.implementation", "Hybrid_Observables");
config->set_property("Observables.dump", "true");
config->set_property("TelemetryDecoder.dump", "true");
gnss_synchro_master.Channel_ID = 0;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
std::string System_and_Signal;
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
gnss_synchro_master.System = 'G';
std::string signal = "1C";
System_and_Signal = "GPS L1 CA";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.early_late_space_narrow_chips", "0.1");
config->set_property("TelemetryDecoder.implementation", "GPS_L1_CA_Telemetry_Decoder");
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
gnss_synchro_master.System = 'E';
std::string signal = "1B";
System_and_Signal = "Galileo E1B";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.15");
config->set_property("Tracking.very_early_late_space_chips", "0.5");
config->set_property("Tracking.early_late_space_narrow_chips", "0.15");
config->set_property("Tracking.very_early_late_space_narrow_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("TelemetryDecoder.implementation", "Galileo_E1B_Telemetry_Decoder");
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA") // or implementation.compare("Galileo_E5a_DLL_PLL_Tracking_b") == 0)
{
gnss_synchro_master.System = 'E';
std::string signal = "5X";
System_and_Signal = "Galileo E5a";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("TelemetryDecoder.implementation", "Galileo_E5a_Telemetry_Decoder");
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
gnss_synchro_master.System = 'G';
std::string signal = "L5";
System_and_Signal = "GPS L5I";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("TelemetryDecoder.implementation", "GPS_L5_Telemetry_Decoder");
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
std::cout << "*****************************************\n";
std::cout << "*** Tracking configuration parameters ***\n";
std::cout << "*****************************************\n";
std::cout << "Signal: " << System_and_Signal << "\n";
std::cout << "implementation: " << config->property("Tracking.implementation", std::string("undefined")) << " \n";
std::cout << "pll_bw_hz: " << config->property("Tracking.pll_bw_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_hz: " << config->property("Tracking.dll_bw_hz", 0.0) << " Hz\n";
std::cout << "fll_bw_hz: " << config->property("Tracking.fll_bw_hz", 0.0) << " Hz\n";
std::cout << "enable_fll_pull_in: " << config->property("Tracking.enable_fll_pull_in", false) << "\n";
std::cout << "enable_fll_steady_state: " << config->property("Tracking.enable_fll_steady_state", false) << "\n";
std::cout << "pll_bw_narrow_hz: " << config->property("Tracking.pll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_narrow_hz: " << config->property("Tracking.dll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "extend_correlation_symbols: " << config->property("Tracking.extend_correlation_symbols", 0) << " Symbols\n";
std::cout << "high_dyn: " << config->property("Tracking.high_dyn", false) << "\n";
std::cout << "smoother_length: " << config->property("Tracking.smoother_length", 0) << "\n";
std::cout << "*****************************************\n";
std::cout << "*****************************************\n";
}
2019-08-17 12:41:32 +00:00
void HybridObservablesTestFpga::check_results_carrier_phase(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
double t0 = measured_ch0(0, 0);
int size1 = measured_ch0.col(0).n_rows;
double t1 = measured_ch0(size1 - 1, 0);
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_phase_interp;
arma::interp1(true_tow_s, true_ch0.col(3), t, true_ch0_phase_interp);
arma::vec meas_ch0_phase_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(3), t, meas_ch0_phase_interp);
// 2. RMSE
arma::vec err_ch0_cycles;
// compute error without the accumulated carrier phase offsets (which depends on the receiver starting time)
err_ch0_cycles = meas_ch0_phase_interp - true_ch0_phase_interp - meas_ch0_phase_interp(0) + true_ch0_phase_interp(0);
arma::vec err2_ch0 = arma::square(err_ch0_cycles);
double rmse_ch0 = sqrt(arma::mean(err2_ch0));
// 3. Mean err and variance
double error_mean_ch0 = arma::mean(err_ch0_cycles);
double error_var_ch0 = arma::var(err_ch0_cycles);
// 4. Peaks
double max_error_ch0 = arma::max(err_ch0_cycles);
double min_error_ch0 = arma::min(err_ch0_cycles);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << " Accumulated Carrier phase RMSE = "
<< rmse_ch0 << ", mean = " << error_mean_ch0
<< ", stdev = " << sqrt(error_var_ch0)
<< " (max,min) = " << max_error_ch0
<< "," << min_error_ch0
<< " [cycles]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Accumulated Carrier phase error [cycles]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Phase error [cycles]");
// conversion between arma::vec and std:vector
std::vector<double> error_vec(err_ch0_cycles.colptr(0), err_ch0_cycles.colptr(0) + err_ch0_cycles.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, error_vec,
"Carrier Phase error");
g3.set_legend();
g3.savetops(data_title + "Carrier_phase_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
ASSERT_LT(rmse_ch0, 0.25);
ASSERT_LT(error_mean_ch0, 0.2);
ASSERT_GT(error_mean_ch0, -0.2);
ASSERT_LT(error_var_ch0, 0.5);
ASSERT_LT(max_error_ch0, 0.5);
ASSERT_GT(min_error_ch0, -0.5);
}
void HybridObservablesTestFpga::check_results_carrier_phase_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_carrier_phase_interp;
arma::vec true_ch1_carrier_phase_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(3), t, true_ch0_carrier_phase_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(3), t, true_ch1_carrier_phase_interp);
arma::vec meas_ch0_carrier_phase_interp;
arma::vec meas_ch1_carrier_phase_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(3), t, meas_ch0_carrier_phase_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(3), t, meas_ch1_carrier_phase_interp);
// generate double difference accumulated carrier phases
// compute error without the accumulated carrier phase offsets (which depends on the receiver starting time)
arma::vec delta_true_carrier_phase_cycles = (true_ch0_carrier_phase_interp - true_ch0_carrier_phase_interp(0)) - (true_ch1_carrier_phase_interp - true_ch1_carrier_phase_interp(0));
arma::vec delta_measured_carrier_phase_cycles = (meas_ch0_carrier_phase_interp - meas_ch0_carrier_phase_interp(0)) - (meas_ch1_carrier_phase_interp - meas_ch1_carrier_phase_interp(0));
// 2. RMSE
arma::vec err;
err = delta_measured_carrier_phase_cycles - delta_true_carrier_phase_cycles;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Carrier Phase RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [Cycles]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Carrier Phase error [Cycles]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Carrier Phase error [Cycles]");
// conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Carrier Phase error");
g3.set_legend();
g3.savetops(data_title + "double_diff_carrier_phase_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
ASSERT_LT(rmse, 0.25);
ASSERT_LT(error_mean, 0.2);
ASSERT_GT(error_mean, -0.2);
ASSERT_LT(error_var, 0.5);
ASSERT_LT(max_error, 0.5);
ASSERT_GT(min_error, -0.5);
}
void HybridObservablesTestFpga::check_results_carrier_doppler_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_carrier_doppler_interp;
arma::vec true_ch1_carrier_doppler_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(2), t, true_ch0_carrier_doppler_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(2), t, true_ch1_carrier_doppler_interp);
arma::vec meas_ch0_carrier_doppler_interp;
arma::vec meas_ch1_carrier_doppler_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(2), t, meas_ch0_carrier_doppler_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(2), t, meas_ch1_carrier_doppler_interp);
// generate double difference carrier Doppler
arma::vec delta_true_carrier_doppler_cycles = true_ch0_carrier_doppler_interp - true_ch1_carrier_doppler_interp;
arma::vec delta_measured_carrier_doppler_cycles = meas_ch0_carrier_doppler_interp - meas_ch1_carrier_doppler_interp;
// 2. RMSE
arma::vec err;
err = delta_measured_carrier_doppler_cycles - delta_true_carrier_doppler_cycles;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Carrier Doppler RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [Hz]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Carrier Doppler error [Hz]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Carrier Doppler error [Hz]");
// conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Carrier Doppler error");
g3.set_legend();
g3.savetops(data_title + "double_diff_carrier_doppler_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
ASSERT_LT(error_mean, 5);
ASSERT_GT(error_mean, -5);
// assuming PLL BW=35
ASSERT_LT(error_var, 200);
ASSERT_LT(max_error, 70);
ASSERT_GT(min_error, -70);
ASSERT_LT(rmse, 30);
}
void HybridObservablesTestFpga::check_results_carrier_doppler(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
double t0 = measured_ch0(0, 0);
int size1 = measured_ch0.col(0).n_rows;
double t1 = measured_ch0(size1 - 1, 0);
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_doppler_interp;
arma::interp1(true_tow_s, true_ch0.col(2), t, true_ch0_doppler_interp);
arma::vec meas_ch0_doppler_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(2), t, meas_ch0_doppler_interp);
// 2. RMSE
arma::vec err_ch0_hz;
// compute error
err_ch0_hz = meas_ch0_doppler_interp - true_ch0_doppler_interp;
arma::vec err2_ch0 = arma::square(err_ch0_hz);
double rmse_ch0 = sqrt(arma::mean(err2_ch0));
// 3. Mean err and variance
double error_mean_ch0 = arma::mean(err_ch0_hz);
double error_var_ch0 = arma::var(err_ch0_hz);
// 4. Peaks
double max_error_ch0 = arma::max(err_ch0_hz);
double min_error_ch0 = arma::min(err_ch0_hz);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Carrier Doppler RMSE = "
<< rmse_ch0 << ", mean = " << error_mean_ch0
<< ", stdev = " << sqrt(error_var_ch0)
<< " (max,min) = " << max_error_ch0
<< "," << min_error_ch0
<< " [Hz]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Carrier Doppler error [Hz]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Doppler error [Hz]");
// conversion between arma::vec and std:vector
std::vector<double> error_vec(err_ch0_hz.colptr(0), err_ch0_hz.colptr(0) + err_ch0_hz.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, error_vec,
"Carrier Doppler error");
g3.set_legend();
g3.savetops(data_title + "Carrier_doppler_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
ASSERT_LT(error_mean_ch0, 5);
ASSERT_GT(error_mean_ch0, -5);
// assuming PLL BW=35
ASSERT_LT(error_var_ch0, 200);
ASSERT_LT(max_error_ch0, 70);
ASSERT_GT(min_error_ch0, -70);
ASSERT_LT(rmse_ch0, 30);
}
void HybridObservablesTestFpga::check_results_duplicated_satellite(
arma::mat& measured_sat1,
arma::mat& measured_sat2,
int ch_id,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
// define the common measured time interval
double t0_sat1 = measured_sat1(0, 0);
int size1 = measured_sat1.col(0).n_rows;
double t1_sat1 = measured_sat1(size1 - 1, 0);
double t0_sat2 = measured_sat2(0, 0);
int size2 = measured_sat2.col(0).n_rows;
double t1_sat2 = measured_sat2(size2 - 1, 0);
double t0;
double t1;
if (t0_sat1 > t0_sat2)
{
t0 = t0_sat1;
}
else
{
t0 = t0_sat2;
}
if (t1_sat1 > t1_sat2)
{
t1 = t1_sat2;
}
else
{
t1 = t1_sat1;
}
if ((t1 - t0) > 0)
{
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
// Doppler
arma::vec meas_sat1_doppler_interp;
arma::interp1(measured_sat1.col(0), measured_sat1.col(2), t, meas_sat1_doppler_interp);
arma::vec meas_sat2_doppler_interp;
arma::interp1(measured_sat2.col(0), measured_sat2.col(2), t, meas_sat2_doppler_interp);
// Carrier Phase
arma::vec meas_sat1_carrier_phase_interp;
arma::vec meas_sat2_carrier_phase_interp;
arma::interp1(measured_sat1.col(0), measured_sat1.col(3), t, meas_sat1_carrier_phase_interp);
arma::interp1(measured_sat2.col(0), measured_sat2.col(3), t, meas_sat2_carrier_phase_interp);
// generate double difference accumulated carrier phases
// compute error without the accumulated carrier phase offsets (which depends on the receiver starting time)
arma::vec delta_measured_carrier_phase_cycles = (meas_sat1_carrier_phase_interp - meas_sat1_carrier_phase_interp(0)) - (meas_sat2_carrier_phase_interp - meas_sat2_carrier_phase_interp(0));
// Pseudoranges
arma::vec meas_sat1_dist_interp;
arma::vec meas_sat2_dist_interp;
arma::interp1(measured_sat1.col(0), measured_sat1.col(4), t, meas_sat1_dist_interp);
arma::interp1(measured_sat2.col(0), measured_sat2.col(4), t, meas_sat2_dist_interp);
// generate delta pseudoranges
arma::vec delta_measured_dist_m = meas_sat1_dist_interp - meas_sat2_dist_interp;
// Carrier Doppler error
// 2. RMSE
arma::vec err_ch0_hz;
// compute error
err_ch0_hz = meas_sat1_doppler_interp - meas_sat2_doppler_interp;
// save matlab file for further analysis
std::vector<double> tmp_vector_common_time_s(t.colptr(0),
t.colptr(0) + t.n_rows);
std::vector<double> tmp_vector_err_ch0_hz(err_ch0_hz.colptr(0),
err_ch0_hz.colptr(0) + err_ch0_hz.n_rows);
save_mat_xy(tmp_vector_common_time_s, tmp_vector_err_ch0_hz, std::string("measured_doppler_error_ch_" + std::to_string(ch_id)));
// compute statistics
arma::vec err2_ch0 = arma::square(err_ch0_hz);
double rmse_ch0 = sqrt(arma::mean(err2_ch0));
// 3. Mean err and variance
double error_mean_ch0 = arma::mean(err_ch0_hz);
double error_var_ch0 = arma::var(err_ch0_hz);
// 4. Peaks
double max_error_ch0 = arma::max(err_ch0_hz);
double min_error_ch0 = arma::min(err_ch0_hz);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Carrier Doppler RMSE = "
<< rmse_ch0 << ", mean = " << error_mean_ch0
<< ", stdev = " << sqrt(error_var_ch0)
<< " (max,min) = " << max_error_ch0
<< "," << min_error_ch0
<< " [Hz]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Carrier Doppler error [Hz]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Doppler error [Hz]");
// conversion between arma::vec and std:vector
std::vector<double> error_vec(err_ch0_hz.colptr(0), err_ch0_hz.colptr(0) + err_ch0_hz.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, error_vec,
"Carrier Doppler error");
g3.set_legend();
g3.savetops(data_title + "Carrier_doppler_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
EXPECT_LT(error_mean_ch0, 5);
EXPECT_GT(error_mean_ch0, -5);
// assuming PLL BW=35
EXPECT_LT(error_var_ch0, 250);
EXPECT_LT(max_error_ch0, 100);
EXPECT_GT(min_error_ch0, -100);
EXPECT_LT(rmse_ch0, 30);
// Carrier Phase error
// 2. RMSE
arma::vec err_carrier_phase;
err_carrier_phase = delta_measured_carrier_phase_cycles;
// save matlab file for further analysis
std::vector<double> tmp_vector_err_carrier_phase(err_carrier_phase.colptr(0),
err_carrier_phase.colptr(0) + err_carrier_phase.n_rows);
save_mat_xy(tmp_vector_common_time_s, tmp_vector_err_carrier_phase, std::string("measured_carrier_phase_error_ch_" + std::to_string(ch_id)));
arma::vec err2_carrier_phase = arma::square(err_carrier_phase);
double rmse_carrier_phase = sqrt(arma::mean(err2_carrier_phase));
// 3. Mean err and variance
double error_mean_carrier_phase = arma::mean(err_carrier_phase);
double error_var_carrier_phase = arma::var(err_carrier_phase);
// 4. Peaks
double max_error_carrier_phase = arma::max(err_carrier_phase);
double min_error_carrier_phase = arma::min(err_carrier_phase);
// 5. report
ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Carrier Phase RMSE = "
<< rmse_carrier_phase << ", mean = " << error_mean_carrier_phase
<< ", stdev = " << sqrt(error_var_carrier_phase)
<< " (max,min) = " << max_error_carrier_phase
<< "," << min_error_carrier_phase
<< " [Cycles]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Carrier Phase error [Cycles]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Phase error [Cycles]");
// conversion between arma::vec and std:vector
std::vector<double> range_error_m(err_carrier_phase.colptr(0), err_carrier_phase.colptr(0) + err_carrier_phase.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Carrier Phase error");
g3.set_legend();
g3.savetops(data_title + "duplicated_satellite_carrier_phase_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
EXPECT_LT(rmse_carrier_phase, 0.25);
EXPECT_LT(error_mean_carrier_phase, 0.2);
EXPECT_GT(error_mean_carrier_phase, -0.2);
EXPECT_LT(error_var_carrier_phase, 0.5);
EXPECT_LT(max_error_carrier_phase, 0.5);
EXPECT_GT(min_error_carrier_phase, -0.5);
// Pseudorange error
// 2. RMSE
arma::vec err_pseudorange;
err_pseudorange = delta_measured_dist_m;
// save matlab file for further analysis
std::vector<double> tmp_vector_err_pseudorange(err_pseudorange.colptr(0),
err_pseudorange.colptr(0) + err_pseudorange.n_rows);
save_mat_xy(tmp_vector_common_time_s, tmp_vector_err_pseudorange, std::string("measured_pr_error_ch_" + std::to_string(ch_id)));
arma::vec err2_pseudorange = arma::square(err_pseudorange);
double rmse_pseudorange = sqrt(arma::mean(err2_pseudorange));
// 3. Mean err and variance
double error_mean_pseudorange = arma::mean(err_pseudorange);
double error_var_pseudorange = arma::var(err_pseudorange);
// 4. Peaks
double max_error_pseudorange = arma::max(err_pseudorange);
double min_error_pseudorange = arma::min(err_pseudorange);
// 5. report
ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Pseudorange RMSE = "
<< rmse_pseudorange << ", mean = " << error_mean_pseudorange
<< ", stdev = " << sqrt(error_var_pseudorange)
<< " (max,min) = " << max_error_pseudorange
<< "," << min_error_pseudorange
<< " [meters]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Pseudorange error [m]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Pseudorange error [m]");
// conversion between arma::vec and std:vector
std::vector<double> range_error_m(err_pseudorange.colptr(0), err_pseudorange.colptr(0) + err_pseudorange.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Pseudorrange error");
g3.set_legend();
g3.savetops(data_title + "duplicated_satellite_pseudorrange_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
EXPECT_LT(rmse_pseudorange, 3.0);
EXPECT_LT(error_mean_pseudorange, 1.0);
EXPECT_GT(error_mean_pseudorange, -1.0);
EXPECT_LT(error_var_pseudorange, 10.0);
EXPECT_LT(max_error_pseudorange, 15.0);
EXPECT_GT(min_error_pseudorange, -15.0);
}
}
2019-08-17 12:41:32 +00:00
bool HybridObservablesTestFpga::save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename)
{
try
{
// WRITE MAT FILE
mat_t* matfp;
matvar_t* matvar;
filename.append(".mat");
std::cout << "save_mat_xy write " << filename << '\n';
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT5);
if (reinterpret_cast<int64_t*>(matfp) != nullptr)
{
size_t dims[2] = {1, x.size()};
matvar = Mat_VarCreate("x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &x[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &y[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
else
{
std::cout << "save_mat_xy: error creating file\n";
}
Mat_Close(matfp);
return true;
}
catch (const std::exception& ex)
{
std::cout << "save_mat_xy: " << ex.what() << '\n';
return false;
}
}
2019-08-17 12:41:32 +00:00
void HybridObservablesTestFpga::check_results_code_pseudorange(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
const std::string& data_title)
{
// 1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
// conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_dist_interp;
arma::vec true_ch1_dist_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(1), t, true_ch0_dist_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(1), t, true_ch1_dist_interp);
arma::vec meas_ch0_dist_interp;
arma::vec meas_ch1_dist_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(4), t, meas_ch0_dist_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(4), t, meas_ch1_dist_interp);
// generate delta pseudoranges
arma::vec delta_true_dist_m = true_ch0_dist_interp - true_ch1_dist_interp;
arma::vec delta_measured_dist_m = meas_ch0_dist_interp - meas_ch1_dist_interp;
// 2. RMSE
arma::vec err;
err = delta_measured_dist_m - delta_true_dist_m;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Pseudorange RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [meters]\n";
std::cout.precision(ss);
// plots
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Pseudorange error [m]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Pseudorange error [m]");
// conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Pseudorrange error");
g3.set_legend();
g3.savetops(data_title + "double_diff_pseudorrange_error");
g3.showonscreen(); // window output
}
// check results against the test tolerance
ASSERT_LT(rmse, 3.0);
ASSERT_LT(error_mean, 1.0);
ASSERT_GT(error_mean, -1.0);
ASSERT_LT(error_var, 10.0);
ASSERT_LT(max_error, 10.0);
ASSERT_GT(min_error, -10.0);
}
2019-08-17 12:41:32 +00:00
bool HybridObservablesTestFpga::ReadRinexObs(std::vector<arma::mat>* obs_vec, Gnss_Synchro gnss)
{
// Open and read reference RINEX observables file
try
{
#if USE_GLOG_AND_GFLAGS
gnsstk::Rinex3ObsStream r_ref(FLAGS_filename_rinex_obs);
#else
gnsstk::Rinex3ObsStream r_ref(absl::GetFlag(FLAGS_filename_rinex_obs));
#endif
r_ref.exceptions(std::ios::failbit);
gnsstk::Rinex3ObsData r_ref_data;
gnsstk::Rinex3ObsHeader r_ref_header;
gnsstk::RinexDatum dataobj;
r_ref >> r_ref_header;
std::vector<bool> first_row;
gnsstk::SatID prn;
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
first_row.push_back(true);
obs_vec->push_back(arma::zeros<arma::mat>(1, 4));
}
while (r_ref >> r_ref_data)
{
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
int myprn = gnss_synchro_vec.at(n).PRN;
switch (gnss.System)
{
case 'G':
#if OLD_GPSTK
prn = gnsstk::SatID(myprn, gnsstk::SatID::systemGPS);
#else
prn = gnsstk::SatID(myprn, gnsstk::SatelliteSystem::GPS);
#endif
break;
case 'E':
#if OLD_GPSTK
prn = gnsstk::SatID(myprn, gnsstk::SatID::systemGalileo);
#else
prn = gnsstk::SatID(myprn, gnsstk::SatelliteSystem::Galileo);
#endif
break;
default:
#if OLD_GPSTK
prn = gnsstk::SatID(myprn, gnsstk::SatID::systemGPS);
#else
prn = gnsstk::SatID(myprn, gnsstk::SatelliteSystem::GPS);
#endif
}
gnsstk::CommonTime time = r_ref_data.time;
2022-07-10 17:19:37 +00:00
#if GNSSTK_OLDER_THAN_9
double sow(static_cast<gnsstk::GPSWeekSecond>(time).sow);
2022-07-10 17:19:37 +00:00
#else
gnsstk::GPSWeekSecond gws(time);
double sow(gws.getSOW());
#endif
auto pointer = r_ref_data.obs.find(prn);
if (pointer == r_ref_data.obs.end())
{
// PRN not present; do nothing
}
else
{
if (first_row.at(n) == false)
{
// insert next column
obs_vec->at(n).insert_rows(obs_vec->at(n).n_rows, 1);
}
else
{
first_row.at(n) = false;
}
if (strcmp("1C\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data; // C1C P1 (psudorange L1)
dataobj = r_ref_data.getObs(prn, "D1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data; // D1C Carrier Doppler
dataobj = r_ref_data.getObs(prn, "L1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data; // L1C Carrier Phase
}
else if (strcmp("1B\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("2S\0", gnss.Signal) == 0) // L2M
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("L5\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("5X\0", gnss.Signal) == 0) // Simulator gives RINEX with E5a+E5b. Doppler and accumulated Carrier phase WILL differ
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else
{
std::cout << "ReadRinexObs unknown signal requested: " << gnss.Signal << '\n';
return false;
}
}
}
} // end while
2020-02-23 01:43:17 +00:00
} // End of 'try' block
catch (const gnsstk::FFStreamError& e)
{
std::cout << e;
return false;
}
catch (const gnsstk::Exception& e)
{
std::cout << e;
return false;
}
catch (const std::exception& e)
{
std::cout << "Exception: " << e.what();
std::cout << "unknown error. I don't feel so well...\n";
return false;
}
std::cout << "ReadRinexObs info:\n";
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
std::cout << "SAT PRN " << gnss_synchro_vec.at(n).PRN << " RINEX epoch read: " << obs_vec->at(n).n_rows << '\n';
}
return true;
}
2019-08-17 12:41:32 +00:00
TEST_F(HybridObservablesTestFpga, ValidationOfResults)
{
// pointer to the DMA thread that sends the samples to the acquisition engine
pthread_t thread_DMA;
struct DMA_handler_args_obs_test args;
// Configure the signal generator
configure_generator();
// Generate signal raw signal samples and observations RINEX file
#if USE_GLOG_AND_GFLAGS
if (FLAGS_disable_generator == false)
#else
if (absl::GetFlag(FLAGS_disable_generator) == false)
#endif
{
generate_signal();
}
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
// use generator or use an external capture file
#if USE_GLOG_AND_GFLAGS
if (FLAGS_enable_external_signal_file)
#else
if (absl::GetFlag(FLAGS_enable_external_signal_file))
#endif
{
// create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
ASSERT_EQ(acquire_signal(), true);
}
else
{
Gnss_Synchro tmp_gnss_synchro;
tmp_gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
#if USE_GLOG_AND_GFLAGS
std::istringstream ss(FLAGS_test_satellite_PRN_list);
#else
std::istringstream ss(absl::GetFlag(FLAGS_test_satellite_PRN_list));
#endif
std::string token;
while (std::getline(ss, token, ','))
{
tmp_gnss_synchro.PRN = boost::lexical_cast<int>(token);
gnss_synchro_vec.push_back(tmp_gnss_synchro);
}
}
#if USE_GLOG_AND_GFLAGS
configure_receiver(FLAGS_PLL_bw_hz_start,
FLAGS_DLL_bw_hz_start,
FLAGS_PLL_narrow_bw_hz,
FLAGS_DLL_narrow_bw_hz,
FLAGS_extend_correlation_symbols,
FLAGS_smoother_length,
FLAGS_high_dyn);
#else
configure_receiver(absl::GetFlag(FLAGS_PLL_bw_hz_start),
absl::GetFlag(FLAGS_DLL_bw_hz_start),
absl::GetFlag(FLAGS_PLL_narrow_bw_hz),
absl::GetFlag(FLAGS_DLL_narrow_bw_hz),
absl::GetFlag(FLAGS_extend_correlation_symbols),
absl::GetFlag(FLAGS_smoother_length),
absl::GetFlag(FLAGS_high_dyn));
#endif
for (auto& n : gnss_synchro_vec)
{
// setup the signal synchronization, simulating an acquisition
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
#endif
{
// based on true observables metadata (for custom sdr generator)
// open true observables log file written by the simulator or based on provided RINEX obs
std::vector<std::shared_ptr<Tracking_True_Obs_Reader>> true_reader_vec;
// read true data from the generator logs
true_reader_vec.push_back(std::make_shared<Tracking_True_Obs_Reader>());
std::cout << "Loading true observable data for PRN " << n.PRN << '\n';
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(n.PRN));
true_obs_file.append(".dat");
ASSERT_NO_THROW({
if (true_reader_vec.back()->open_obs_file(true_obs_file) == false)
{
throw std::exception();
};
}) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_NO_THROW({
if (true_reader_vec.back()->read_binary_obs() == false)
{
throw std::exception();
};
}) << "Failure reading true observables file";
// restart the epoch counter
true_reader_vec.back()->restart();
std::cout << "Initial Doppler [Hz]=" << true_reader_vec.back()->doppler_l1_hz << " Initial code delay [Chips]="
<< true_reader_vec.back()->prn_delay_chips << '\n';
n.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_reader_vec.back()->prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD_S;
n.Acq_doppler_hz = true_reader_vec.back()->doppler_l1_hz;
n.Acq_samplestamp_samples = 0;
}
else
{
// based on the signal acquisition process
std::cout << "Estimated Initial Doppler " << n.Acq_doppler_hz
<< " [Hz], estimated Initial code delay " << n.Acq_delay_samples << " [Samples]"
<< " Acquisition SampleStamp is " << n.Acq_samplestamp_samples << '\n';
// n.Acq_samplestamp_samples = 0;
}
}
// We need to reset the HW again in order to reset the sample counter.
// The HW is reset by sending a command to the acquisition HW accelerator
// In order to send the reset command to the HW we instantiate the acquisition module.
std::shared_ptr<AcquisitionInterface> acquisition;
// set the scaling factor
args.scaling_factor = DMA_SIGNAL_SCALING_FACTOR;
// reset the HW to clear the sample counters: the acquisition constructor generates a reset
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
acquisition->stop_acquisition(); // reset the whole system including the sample counters
std::vector<std::shared_ptr<TrackingInterface>> tracking_ch_vec;
std::vector<std::shared_ptr<TelemetryDecoderInterface>> tlm_ch_vec;
std::vector<gr::blocks::null_sink::sptr> null_sink_vec;
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
2019-08-17 12:41:32 +00:00
// set channels ids
gnss_synchro_vec.at(n).Channel_ID = n;
2019-08-17 12:41:32 +00:00
// create the tracking channels and create the telemetry decoders
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config.get(), "Tracking", 1, 1);
tracking_ch_vec.push_back(std::dynamic_pointer_cast<TrackingInterface>(trk_));
std::shared_ptr<GNSSBlockInterface> tlm_ = factory->GetBlock(config.get(), "TelemetryDecoder", 1, 1);
tlm_ch_vec.push_back(std::dynamic_pointer_cast<TelemetryDecoderInterface>(tlm_));
// create null sinks for observables output
null_sink_vec.push_back(gr::blocks::null_sink::make(sizeof(Gnss_Synchro)));
ASSERT_NO_THROW({
tlm_ch_vec.back()->set_channel(gnss_synchro_vec.at(n).Channel_ID);
switch (gnss_synchro_master.System)
{
case 'G':
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("GPS"), gnss_synchro_vec.at(n).PRN));
break;
case 'E':
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("Galileo"), gnss_synchro_vec.at(n).PRN));
break;
default:
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("GPS"), gnss_synchro_vec.at(n).PRN));
}
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking_ch_vec.back()->set_channel(gnss_synchro_vec.at(n).Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking_ch_vec.back()->set_gnss_synchro(&gnss_synchro_vec.at(n));
}) << "Failure setting gnss_synchro.";
}
top_block = gr::make_top_block("Telemetry_Decoder test");
auto dummy_msg_rx_trk = HybridObservablesTest_msg_rx_Fpga_make();
auto dummy_tlm_msg_rx = HybridObservablesTest_tlm_msg_rx_Fpga_make();
// Observables
std::shared_ptr<ObservablesInterface> observables(new HybridObservables(config.get(), "Observables", tracking_ch_vec.size() + 1, tracking_ch_vec.size()));
for (auto& n : tracking_ch_vec)
{
ASSERT_NO_THROW({
n->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
}
std::string file;
ASSERT_NO_THROW({
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
file = "./" + filename_raw_data;
}
else
{
file = FLAGS_signal_file;
}
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
file = "./" + filename_raw_data;
}
else
{
file = absl::GetFlag(FLAGS_signal_file);
}
#endif
int observable_interval_ms = 20;
double fs = static_cast<double>(config->property("GNSS-SDR.internal_fs_sps", 0));
gnss_sdr_fpga_sample_counter_sptr ch_out_fpga_sample_counter;
ch_out_fpga_sample_counter = gnss_sdr_make_fpga_sample_counter(fs, observable_interval_ms);
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
// top_block->connect(gr_interleaved_char_to_complex, 0, tracking_ch_vec.at(n)->get_left_block(), 0);
top_block->connect(tracking_ch_vec.at(n)->get_right_block(), 0, tlm_ch_vec.at(n)->get_left_block(), 0);
top_block->connect(tlm_ch_vec.at(n)->get_right_block(), 0, observables->get_left_block(), n);
top_block->msg_connect(tracking_ch_vec.at(n)->get_right_block(), pmt::mp("events"), dummy_msg_rx_trk, pmt::mp("events"));
top_block->connect(observables->get_right_block(), n, null_sink_vec.at(n), 0);
}
// connect sample counter and timmer to the last channel in observables block (extra channel)
top_block->connect(ch_out_fpga_sample_counter, 0, observables->get_left_block(), tracking_ch_vec.size()); // extra port for the sample counter pulse
}) << "Failure connecting the blocks.";
top_block->start();
2019-12-30 17:43:46 +00:00
usleep(1000000); // give time for the system to start before receiving the start tracking command.
for (auto& n : tracking_ch_vec)
{
n->start_tracking();
}
// wait to give time for the acquisition thread to set up the tracking process
usleep(1000000);
args.file = file;
#if USE_GLOG_AND_GFLAGS
args.nsamples_tx = baseband_sampling_freq * FLAGS_duration;
#else
args.nsamples_tx = baseband_sampling_freq * absl::GetFlag(FLAGS_duration);
#endif
args.skip_used_samples = 0;
if (pthread_create(&thread_DMA, nullptr, handler_DMA_obs_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
// wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr);
// stop the top block
top_block->stop();
// stop the tracking process:
for (auto& n : tracking_ch_vec)
{
ASSERT_NO_THROW({
n->stop_tracking();
}) << "Failure connecting tracking to the top_block.";
}
acquisition->stop_acquisition();
EXPECT_NO_THROW({
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block.";
2019-08-17 12:41:32 +00:00
// check results
// Matrices for storing columnwise true GPS time, Range, Doppler and Carrier phase
std::vector<arma::mat> true_obs_vec;
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
#endif
{
2019-08-17 12:41:32 +00:00
// load the true values
True_Observables_Reader true_observables;
ASSERT_NO_THROW({
if (true_observables.open_obs_file(std::string("./obs_out.bin")) == false)
{
throw std::exception();
}
}) << "Failure opening true observables file";
auto nepoch = static_cast<unsigned int>(true_observables.num_epochs());
std::cout << "True observation epochs = " << nepoch << '\n';
true_observables.restart();
int64_t epoch_counter = 0;
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
true_obs_vec.push_back(arma::zeros<arma::mat>(nepoch, 4));
}
ASSERT_NO_THROW({
while (true_observables.read_binary_obs())
{
for (unsigned int n = 0; n < true_obs_vec.size(); n++)
{
if (round(true_observables.prn[n]) != gnss_synchro_vec.at(n).PRN)
{
std::cout << "True observables SV PRN does not match measured ones: "
<< round(true_observables.prn[n]) << " vs. " << gnss_synchro_vec.at(n).PRN << '\n';
throw std::exception();
}
true_obs_vec.at(n)(epoch_counter, 0) = true_observables.gps_time_sec[n];
true_obs_vec.at(n)(epoch_counter, 1) = true_observables.dist_m[n];
true_obs_vec.at(n)(epoch_counter, 2) = true_observables.doppler_l1_hz[n];
true_obs_vec.at(n)(epoch_counter, 3) = true_observables.acc_carrier_phase_l1_cycles[n];
}
epoch_counter++;
}
});
}
else
{
#if USE_GLOG_AND_GFLAGS
2019-12-30 17:43:46 +00:00
if (!FLAGS_duplicated_satellites_test)
#else
if (!absl::GetFlag(FLAGS_duplicated_satellites_test))
#endif
2019-12-30 17:43:46 +00:00
{
ASSERT_EQ(ReadRinexObs(&true_obs_vec, gnss_synchro_master), true)
<< "Failure reading RINEX file";
}
}
2019-08-17 12:41:32 +00:00
// read measured values
Observables_Dump_Reader estimated_observables(tracking_ch_vec.size());
ASSERT_NO_THROW({
if (estimated_observables.open_obs_file(std::string("./observables.dat")) == false)
{
throw std::exception();
}
}) << "Failure opening dump observables file";
auto nepoch = static_cast<unsigned int>(estimated_observables.num_epochs());
std::cout << "Measured observations epochs = " << nepoch << '\n';
// Matrices for storing columnwise measured RX_time, TOW, Doppler, Carrier phase and Pseudorange
std::vector<arma::mat> measured_obs_vec;
std::vector<int64_t> epoch_counters_vec;
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
measured_obs_vec.push_back(arma::zeros<arma::mat>(nepoch, 5));
epoch_counters_vec.push_back(0);
}
estimated_observables.restart();
while (estimated_observables.read_binary_obs())
{
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
if (static_cast<bool>(estimated_observables.valid[n]))
{
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 0) = estimated_observables.RX_time[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 1) = estimated_observables.TOW_at_current_symbol_s[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 2) = estimated_observables.Carrier_Doppler_hz[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 3) = estimated_observables.Acc_carrier_phase_hz[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 4) = estimated_observables.Pseudorange_m[n];
epoch_counters_vec.at(n)++;
}
}
}
2019-08-17 12:41:32 +00:00
// Cut measurement tail zeros
arma::uvec index;
for (auto& n : measured_obs_vec)
{
index = arma::find(n.col(0) > 0.0, 1, "last");
if ((!index.empty()) and index(0) < (nepoch - 1))
{
n.shed_rows(index(0) + 1, nepoch - 1);
}
}
// Cut measurement initial transitory of the measurements
#if USE_GLOG_AND_GFLAGS
double initial_transitory_s = FLAGS_skip_obs_transitory_s;
#else
double initial_transitory_s = absl::GetFlag(FLAGS_skip_obs_transitory_s);
#endif
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
index = arma::find(measured_obs_vec.at(n).col(0) >= (measured_obs_vec.at(n)(0, 0) + initial_transitory_s), 1, "first");
if ((!index.empty()) and (index(0) > 0))
{
measured_obs_vec.at(n).shed_rows(0, index(0));
}
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_duplicated_satellites_test)
#else
if (!absl::GetFlag(FLAGS_duplicated_satellites_test))
#endif
{
index = arma::find(measured_obs_vec.at(n).col(0) >= true_obs_vec.at(n)(0, 0), 1, "first");
if ((!index.empty()) and (index(0) > 0))
{
measured_obs_vec.at(n).shed_rows(0, index(0));
}
}
}
#if USE_GLOG_AND_GFLAGS
if (FLAGS_duplicated_satellites_test)
#else
if (absl::GetFlag(FLAGS_duplicated_satellites_test))
#endif
{
// special test mode for duplicated satellites
std::vector<unsigned int> prn_pairs;
#if USE_GLOG_AND_GFLAGS
std::stringstream ss(FLAGS_duplicated_satellites_prns);
#else
std::stringstream ss(absl::GetFlag(FLAGS_duplicated_satellites_prns));
#endif
unsigned int i;
while (ss >> i)
{
prn_pairs.push_back(i);
if (ss.peek() == ',')
{
ss.ignore();
}
}
if (prn_pairs.size() % 2 != 0)
{
std::cout << "Test settings error: duplicated_satellites_prns are even\n";
}
else
{
for (unsigned int n = 0; n < prn_pairs.size(); n = n + 2)
{
int sat1_ch_id = -1;
int sat2_ch_id = -1;
for (unsigned int ch = 0; ch < measured_obs_vec.size(); ch++)
{
if (epoch_counters_vec.at(ch) > 100) // discard non-valid channels
{
if (gnss_synchro_vec.at(ch).PRN == prn_pairs.at(n))
{
sat1_ch_id = ch;
}
if (gnss_synchro_vec.at(ch).PRN == prn_pairs.at(n + 1))
{
sat2_ch_id = ch;
}
}
}
if (sat1_ch_id != -1 and sat2_ch_id != -1)
{
// compute single differences for the duplicated satellite
check_results_duplicated_satellite(
measured_obs_vec.at(sat1_ch_id),
measured_obs_vec.at(sat2_ch_id),
sat1_ch_id,
"Duplicated sat [CH " + std::to_string(sat1_ch_id) + "," + std::to_string(sat2_ch_id) + "] PRNs " + std::to_string(gnss_synchro_vec.at(sat1_ch_id).PRN) + "," + std::to_string(gnss_synchro_vec.at(sat2_ch_id).PRN) + " ");
}
else
{
std::cout << "Satellites PRNs " << prn_pairs.at(n) << "and " << prn_pairs.at(n) << " not found\n";
}
}
}
}
else
{
// normal mode
// Correct the clock error using true values (it is not possible for a receiver to correct
// the receiver clock offset error at the observables level because it is required the
// decoding of the ephemeris data and solve the PVT equations)
// Find the reference satellite (the nearest) and compute the receiver time offset at observable level
double min_pr = std::numeric_limits<double>::max();
unsigned int min_pr_ch_id = 0;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
if (epoch_counters_vec.at(n) > 100) // discard non-valid channels
{
{
if (measured_obs_vec.at(n)(0, 4) < min_pr)
{
min_pr = measured_obs_vec.at(n)(0, 4);
min_pr_ch_id = n;
}
}
}
else
{
std::cout << "PRN " << gnss_synchro_vec.at(n).PRN << " has NO observations!\n";
}
}
arma::vec receiver_time_offset_ref_channel_s;
arma::uvec index2;
index2 = arma::find(true_obs_vec.at(min_pr_ch_id).col(0) >= measured_obs_vec.at(min_pr_ch_id).col(0)(0), 1, "first");
if ((!index2.empty()) and (index2(0) > 0))
{
receiver_time_offset_ref_channel_s = (true_obs_vec.at(min_pr_ch_id).col(1)(index2(0)) - measured_obs_vec.at(min_pr_ch_id).col(4)(0)) / SPEED_OF_LIGHT_M_S;
std::cout << "Ref. channel initial Receiver time offset " << receiver_time_offset_ref_channel_s(0) * 1e3 << " [ms]\n";
}
else
{
ASSERT_NO_THROW(
throw std::exception();)
<< "Error finding observation time epoch in the reference data";
}
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
// debug save to .mat
std::vector<double> tmp_vector_x(true_obs_vec.at(n).col(0).colptr(0),
true_obs_vec.at(n).col(0).colptr(0) + true_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y(true_obs_vec.at(n).col(1).colptr(0),
true_obs_vec.at(n).col(1).colptr(0) + true_obs_vec.at(n).col(1).n_rows);
save_mat_xy(tmp_vector_x, tmp_vector_y, std::string("true_pr_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x2(measured_obs_vec.at(n).col(0).colptr(0),
measured_obs_vec.at(n).col(0).colptr(0) + measured_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y2(measured_obs_vec.at(n).col(4).colptr(0),
measured_obs_vec.at(n).col(4).colptr(0) + measured_obs_vec.at(n).col(4).n_rows);
save_mat_xy(tmp_vector_x2, tmp_vector_y2, std::string("measured_pr_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x3(true_obs_vec.at(n).col(0).colptr(0),
true_obs_vec.at(n).col(0).colptr(0) + true_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y3(true_obs_vec.at(n).col(2).colptr(0),
true_obs_vec.at(n).col(2).colptr(0) + true_obs_vec.at(n).col(2).n_rows);
save_mat_xy(tmp_vector_x3, tmp_vector_y3, std::string("true_doppler_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x4(measured_obs_vec.at(n).col(0).colptr(0),
measured_obs_vec.at(n).col(0).colptr(0) + measured_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y4(measured_obs_vec.at(n).col(2).colptr(0),
measured_obs_vec.at(n).col(2).colptr(0) + measured_obs_vec.at(n).col(2).n_rows);
save_mat_xy(tmp_vector_x4, tmp_vector_y4, std::string("measured_doppler_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x5(true_obs_vec.at(n).col(0).colptr(0),
true_obs_vec.at(n).col(0).colptr(0) + true_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y5(true_obs_vec.at(n).col(3).colptr(0),
true_obs_vec.at(n).col(3).colptr(0) + true_obs_vec.at(n).col(3).n_rows);
save_mat_xy(tmp_vector_x5, tmp_vector_y5, std::string("true_cp_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x6(measured_obs_vec.at(n).col(0).colptr(0),
measured_obs_vec.at(n).col(0).colptr(0) + measured_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y6(measured_obs_vec.at(n).col(3).colptr(0),
measured_obs_vec.at(n).col(3).colptr(0) + measured_obs_vec.at(n).col(3).n_rows);
save_mat_xy(tmp_vector_x6, tmp_vector_y6, std::string("measured_cp_ch_" + std::to_string(n)));
if (epoch_counters_vec.at(n) > 100) // discard non-valid channels
{
arma::vec true_TOW_ref_ch_s = true_obs_vec.at(min_pr_ch_id).col(0) - receiver_time_offset_ref_channel_s(0);
arma::vec true_TOW_ch_s = true_obs_vec.at(n).col(0) - receiver_time_offset_ref_channel_s(0);
// Compare measured observables
if (min_pr_ch_id != n)
{
check_results_code_pseudorange(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
// Do not compare E5a with E5 RINEX due to the Doppler frequency discrepancy caused by the different center frequencies
// E5a_fc=1176.45e6, E5b_fc=1207.14e6, E5_fc=1191.795e6;
#if USE_GLOG_AND_GFLAGS
if (strcmp("5X\0", gnss_synchro_vec.at(n).Signal) != 0 or FLAGS_compare_with_5X)
#else
if (strcmp("5X\0", gnss_synchro_vec.at(n).Signal) != 0 or absl::GetFlag(FLAGS_compare_with_5X))
#endif
{
check_results_carrier_phase_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
}
}
else
{
std::cout << "[CH " << std::to_string(n) << "] PRN " << std::to_string(gnss_synchro_vec.at(n).PRN) << " is the reference satellite\n";
}
#if USE_GLOG_AND_GFLAGS
if (FLAGS_compute_single_diffs)
#else
if (absl::GetFlag(FLAGS_compute_single_diffs))
#endif
{
check_results_carrier_phase(true_obs_vec.at(n),
true_TOW_ch_s,
measured_obs_vec.at(n),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler(true_obs_vec.at(n),
true_TOW_ch_s,
measured_obs_vec.at(n),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
}
}
else
{
std::cout << "PRN " << gnss_synchro_vec.at(n).PRN << " has NO observations!\n";
}
}
}
std::cout << "Test completed in " << elapsed_seconds.count() << " [s]\n";
}