gnss-sdr/src/tests/unit-tests/signal-processing-blocks/observables/hybrid_observables_test_fpg...

2681 lines
110 KiB
C++
Raw Normal View History

/*!
* \file hybrid_observables_test.cc
* \brief This class implements a tracking test for Galileo_E5a_DLL_PLL_Tracking
* implementation based on some input parameters.
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <unistd.h>
#include <chrono>
#include <exception>
#include <armadillo>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include <gpstk/RinexUtilities.hpp>
#include <gpstk/Rinex3ObsBase.hpp>
#include <gpstk/Rinex3ObsData.hpp>
#include <gpstk/Rinex3ObsHeader.hpp>
#include <gpstk/Rinex3ObsStream.hpp>
#include <matio.h>
#include "GPS_L1_CA.h"
#include "gnss_satellite.h"
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "tracking_interface.h"
#include "telemetry_decoder_interface.h"
#include "in_memory_configuration.h"
#include "gnss_synchro.h"
#include "gps_l1_ca_telemetry_decoder.h"
#include "tracking_true_obs_reader.h"
#include "true_observables_reader.h"
#include "tracking_dump_reader.h"
#include "observables_dump_reader.h"
#include "tlm_dump_reader.h"
#include "gps_l1_ca_dll_pll_tracking.h"
#include "gps_l1_ca_dll_pll_tracking_fpga.h"
#include "hybrid_observables.h"
#include "signal_generator_flags.h"
//#include "gnss_sdr_sample_counter.h"
#include "gnss_sdr_fpga_sample_counter.h"
#include "test_flags.h"
#include "tracking_tests_flags.h"
#include "observable_tests_flags.h"
#include "gnuplot_i.h"
// threads
#include <pthread.h> // for pthread stuff
#include <fcntl.h> // for open, O_RDWR, O_SYNC
#include <iostream> // for cout, endl
#include <sys/mman.h> // for mmap
#define TEST_OBS_MAX_INPUT_COMPLEX_SAMPLES_TOTAL 8192 // maximum DMA sample block size in complex samples
#define TEST_OBS_COMPLEX_SAMPLE_SIZE 2 // sample size in bytes
#define TEST_OBS_NUM_QUEUES 2 // number of queues (1 for GPS L1/Galileo E1, and 1 for GPS L5/Galileo E5)
#define TEST_OBS_NSAMPLES_TRACKING 1000000000 // number of samples during which we test the tracking module
#define TEST_OBS_NSAMPLES_FINAL 50000 // number of samples sent after running tracking to unblock the SW if it is waiting for an interrupt of the tracking module
#define TEST_OBS_NSAMPLES_ACQ_DOPPLER_SWEEP 50000000 // number of samples sent to the acquisition module when running acquisition when the HW controls the doppler loop
#define DOWNAMPLING_FILTER_INIT_SAMPLES 100 // some samples to initialize the state of the downsampling filter
#define DOWNSAMPLING_FILTER_DELAY 48
#define DOWNSAMPLING_FILTER_OFFSET_SAMPLES 0
// HW related options
//bool test_observables_doppler_control_in_sw = 1; // 1 => doppler sweep controlled by the SW test code , 0 => doppler sweep controlled by the HW
bool test_observables_show_results_table = 0; // 1 => show matrix of (doppler, (max value, power sum)) results (only if test_observables_doppler_control_in_sw = 1), 0=> do not show it
bool test_observables_skip_samples_already_used = 1; // if test_observables_doppler_control_in_sw = 1 and test_observables_skip_samples_already_used = 1 => for each PRN loop skip the samples used in the previous PRN loops
// (exactly in the same way as the SW)
// if test_observables_doppler_control_in_sw = 1 and test_observables_skip_samples_already_used = 0 => the sampe samples are used for each PRN loop
// if test_observables_doppler_control_in_sw = 0 => test_observables_skip_samples_already_used is not applicable
bool doppler_loop_control_in_sw_obs_test = 0;
// ######## GNURADIO BLOCK MESSAGE RECEVER FOR TRACKING MESSAGES #########
class HybridObservablesTest_msg_rx_Fpga;
typedef boost::shared_ptr<HybridObservablesTest_msg_rx_Fpga> HybridObservablesTest_msg_rx_Fpga_sptr;
HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make();
class HybridObservablesTest_msg_rx_Fpga : public gr::block
{
private:
friend HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make();
void msg_handler_events(pmt::pmt_t msg);
HybridObservablesTest_msg_rx_Fpga();
public:
int rx_message;
~HybridObservablesTest_msg_rx_Fpga(); //!< Default destructor
};
HybridObservablesTest_msg_rx_Fpga_sptr HybridObservablesTest_msg_rx_Fpga_make()
{
return HybridObservablesTest_msg_rx_Fpga_sptr(new HybridObservablesTest_msg_rx_Fpga());
}
void HybridObservablesTest_msg_rx_Fpga::msg_handler_events(pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(msg);
rx_message = message;
}
catch (boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
HybridObservablesTest_msg_rx_Fpga::HybridObservablesTest_msg_rx_Fpga() : gr::block("HybridObservablesTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&HybridObservablesTest_msg_rx_Fpga::msg_handler_events, this, _1));
rx_message = 0;
}
HybridObservablesTest_msg_rx_Fpga::~HybridObservablesTest_msg_rx_Fpga()
{
}
// ###########################################################
// ######## GNURADIO BLOCK MESSAGE RECEVER FOR TLM MESSAGES #########
class HybridObservablesTest_tlm_msg_rx_Fpga;
typedef boost::shared_ptr<HybridObservablesTest_tlm_msg_rx_Fpga> HybridObservablesTest_tlm_msg_rx_Fpga_sptr;
HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make();
class HybridObservablesTest_tlm_msg_rx_Fpga : public gr::block
{
private:
friend HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make();
void msg_handler_events(pmt::pmt_t msg);
HybridObservablesTest_tlm_msg_rx_Fpga();
public:
int rx_message;
~HybridObservablesTest_tlm_msg_rx_Fpga(); //!< Default destructor
};
HybridObservablesTest_tlm_msg_rx_Fpga_sptr HybridObservablesTest_tlm_msg_rx_Fpga_make()
{
return HybridObservablesTest_tlm_msg_rx_Fpga_sptr(new HybridObservablesTest_tlm_msg_rx_Fpga());
}
void HybridObservablesTest_tlm_msg_rx_Fpga::msg_handler_events(pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(msg);
rx_message = message;
}
catch (boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
HybridObservablesTest_tlm_msg_rx_Fpga::HybridObservablesTest_tlm_msg_rx_Fpga() : gr::block("HybridObservablesTest_tlm_msg_rx_Fpga", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&HybridObservablesTest_tlm_msg_rx_Fpga::msg_handler_events, this, _1));
rx_message = 0;
}
HybridObservablesTest_tlm_msg_rx_Fpga::~HybridObservablesTest_tlm_msg_rx_Fpga()
{
}
// ###########################################################
class HybridObservablesTestFpga : public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string implementation = FLAGS_trk_test_implementation;
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
int configure_generator();
int generate_signal();
bool save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename);
void check_results_carrier_phase(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
std::string data_title);
void check_results_carrier_phase_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title);
void check_results_carrier_doppler(arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
std::string data_title);
void check_results_carrier_doppler_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title);
void check_results_code_pseudorange(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title);
HybridObservablesTestFpga()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
}
~HybridObservablesTestFpga()
{
}
bool ReadRinexObs(std::vector<arma::mat>* obs_vec, Gnss_Synchro gnss);
bool acquire_signal();
void configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols);
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro_master;
std::vector<Gnss_Synchro> gnss_synchro_vec;
size_t item_size;
};
int HybridObservablesTestFpga::configure_generator()
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
return 0;
}
int HybridObservablesTestFpga::generate_signal()
{
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], NULL};
int pid;
if ((pid = fork()) == -1)
perror("fork err");
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv err." << std::endl;
std::terminate();
}
waitpid(pid, &child_status, 0);
std::cout << "Signal and Observables RINEX and RAW files created." << std::endl;
return 0;
}
const size_t TEST_OBS_PAGE_SIZE = 0x10000;
const unsigned int TEST_OBS_TEST_REGISTER_TRACK_WRITEVAL = 0x55AA;
void setup_fpga_switch_obs_test(void)
{
int switch_device_descriptor; // driver descriptor
volatile unsigned *switch_map_base; // driver memory map
if ((switch_device_descriptor = open("/dev/uio1", O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << "/dev/uio1";
}
switch_map_base = reinterpret_cast<volatile unsigned *>(mmap(nullptr, TEST_OBS_PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, switch_device_descriptor, 0));
if (switch_map_base == reinterpret_cast<void *>(-1))
{
LOG(WARNING) << "Cannot map the FPGA switch module into tracking memory";
std::cout << "Could not map switch memory." << std::endl;
}
// sanity check : check test register
unsigned writeval = TEST_OBS_TEST_REGISTER_TRACK_WRITEVAL;
unsigned readval;
// write value to test register
switch_map_base[3] = writeval;
// read value from test register
readval = switch_map_base[3];
if (writeval != readval)
{
LOG(WARNING) << "Test register sanity check failed";
}
else
{
LOG(INFO) << "Test register sanity check success !";
}
switch_map_base[0] = 0; //0 -> DMA to queue 0, 1 -> DMA to queue 1, 2 -> A/Ds to queues
}
static pthread_mutex_t mutex_obs_test = PTHREAD_MUTEX_INITIALIZER;
volatile unsigned int send_samples_start_obs_test = 0;
int8_t input_samples_obs_test[TEST_OBS_MAX_INPUT_COMPLEX_SAMPLES_TOTAL*TEST_OBS_COMPLEX_SAMPLE_SIZE]; // re - im
int8_t input_samples_dma_obs_test[TEST_OBS_MAX_INPUT_COMPLEX_SAMPLES_TOTAL*TEST_OBS_COMPLEX_SAMPLE_SIZE*TEST_OBS_NUM_QUEUES];
struct DMA_handler_args_obs_test {
std::string file;
unsigned int nsamples_tx;
unsigned int skip_used_samples;
unsigned int freq_band; // 0 for GPS L1/ Galileo E1, 1 for GPS L5/Galileo E5
};
void *handler_DMA_obs_test(void *arguments)
{
// DMA process that configures the DMA to send the samples to the acquisition engine
int tx_fd; // DMA descriptor
FILE *rx_signal_file_id; // Input file descriptor
bool file_completed = false; // flag to indicate if the file is completed
unsigned int nsamples_block; // number of samples to send in the next DMA block of samples
unsigned int nread_elements; // number of elements effectively read from the input file
unsigned int nsamples = 0; // number of complex samples effectively transferred
unsigned int index0, dma_index = 0; // counters used for putting the samples in the order expected by the DMA
unsigned int num_bytes_to_transfer; // DMA transfer block size in bytes
unsigned int nsamples_transmitted;
struct DMA_handler_args *args = (struct DMA_handler_args *) arguments;
unsigned int nsamples_tx = args->nsamples_tx;
//printf("in handler DMA to send %d\n", nsamples_tx);
std::string file = args->file; // input filename
unsigned int skip_used_samples = args->skip_used_samples;
// open DMA device
tx_fd = open("/dev/loop_tx", O_WRONLY);
if ( tx_fd < 0 )
{
printf("DMA can't open loop device\n");
exit(1);
}
else
// open input file
rx_signal_file_id = fopen(file.c_str(), "rb");
if (rx_signal_file_id < 0)
{
printf("DMA can't open input file\n");
exit(1);
}
//printf("in handler DMA waiting for send samples start\n");
while(send_samples_start_obs_test == 0); // wait until acquisition starts
//printf("in handler DMA going to send samples\n");
// skip initial samples
int skip_samples = (int) FLAGS_skip_samples;
fseek( rx_signal_file_id, (skip_samples + skip_used_samples)*2, SEEK_SET );
//printf("sending %d samples starting at position %d\n", nsamples_tx,skip_samples + skip_used_samples);
//printf("\n dma skip_samples = %d\n", skip_samples);
//printf("\n dma skip used samples = %d\n", skip_used_samples);
//printf("dma skip_samples = %d\n", skip_samples);
//printf("dma skip used samples = %d\n", skip_used_samples);
//printf("dma file_completed = %d\n", file_completed);
//printf("dma nsamples = %d\n", nsamples);
//printf("dma nsamples_tx = %d\n", nsamples_tx);
usleep(50000); // wait some time to give time to the main thread to start the acquisition module
unsigned int kk;
//printf("enter kk");
//scanf("%d", &kk);
//printf("args->freq_band = %d\n", (int) args->freq_band);
while (file_completed == false)
{
//printf("samples sent = %d\n", nsamples);
if (nsamples_tx - nsamples > MAX_INPUT_COMPLEX_SAMPLES_TOTAL)
{
nsamples_block = MAX_INPUT_COMPLEX_SAMPLES_TOTAL;
}
else
{
nsamples_block = nsamples_tx - nsamples; // remaining samples to be sent
file_completed = true;
}
nread_elements = fread(input_samples_obs_test, sizeof(int8_t), nsamples_block*COMPLEX_SAMPLE_SIZE, rx_signal_file_id);
if (nread_elements != nsamples_block * COMPLEX_SAMPLE_SIZE)
{
printf("file completed\n");
file_completed = true;
}
nsamples+=(nread_elements/COMPLEX_SAMPLE_SIZE);
if (nread_elements > 0)
{
// for the 32-BIT DMA
dma_index = 0;
for (index0 = 0;index0 < (nread_elements);index0+=COMPLEX_SAMPLE_SIZE)
{
if (args->freq_band == 0)
{
// channel 1 (queue 1) -> E5/L5
input_samples_dma_obs_test[dma_index] = 0;
input_samples_dma_obs_test[dma_index+1] = 0;
// channel 0 (queue 0) -> E1/L1
input_samples_dma_obs_test[dma_index+2] = input_samples_obs_test[index0];
input_samples_dma_obs_test[dma_index+3] = input_samples_obs_test[index0+1];
}
else
{
// channel 1 (queue 1) -> E5/L5
input_samples_dma_obs_test[dma_index] = input_samples_obs_test[index0];
input_samples_dma_obs_test[dma_index+1] = input_samples_obs_test[index0+1];
// channel 0 (queue 0) -> E1/L1
input_samples_dma_obs_test[dma_index+2] = 0;
input_samples_dma_obs_test[dma_index+3] = 0;
}
dma_index += 4;
}
//printf("writing samples to send\n");
nsamples_transmitted = write(tx_fd, &input_samples_dma_obs_test[0], nread_elements*NUM_QUEUES);
//printf("exited writing samples to send\n");
if (nsamples_transmitted != nread_elements*NUM_QUEUES)
{
std::cout << "Error : DMA could not send all the requested samples" << std::endl;
}
}
}
close(tx_fd);
fclose(rx_signal_file_id);
//printf("DMA finished\n");
return NULL;
}
bool HybridObservablesTestFpga::acquire_signal()
{
pthread_t thread_DMA;
int baseband_sampling_freq_acquisition;
// step 0 determine the sampling frequency
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
baseband_sampling_freq_acquisition = baseband_sampling_freq/4; // downsampling filter in L1/E1
//printf(" aaaaaa baseband_sampling_freq_acquisition = %d\n", baseband_sampling_freq_acquisition);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
baseband_sampling_freq_acquisition = baseband_sampling_freq/4; // downsampling filter in L1/E1
//printf(" aaaaaa baseband_sampling_freq_acquisition = %d\n", baseband_sampling_freq_acquisition);
}
else
{
baseband_sampling_freq_acquisition = baseband_sampling_freq;
}
// 1. Setup GNU Radio flowgraph (file_source -> Acquisition_10m)
gr::top_block_sptr top_block;
top_block = gr::make_top_block("Acquisition test");
int SV_ID = 1; //initial sv id
// Satellite signal definition
Gnss_Synchro tmp_gnss_synchro;
tmp_gnss_synchro.Channel_ID = 0;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.blocking_on_standby", "true"); -- not used in the HW
//config->set_property("Acquisition.blocking", "true"); -- not used in the HW
//config->set_property("Acquisition.dump", "false"); -- not used in the HW
//config->set_property("Acquisition.dump_filename", "./data/acquisition.dat"); -- not used in the HW
//config->set_property("Acquisition.use_CFAR_algorithm", "false"); -- not used in the HW at this moment
//config->set_property("Acquisition.item_type", "cshort");
//config->set_property("Acquisition.if", "0");
//config->set_property("Acquisition.sampled_ms", "4");
//config->set_property("Acquisition.select_queue_Fpga", "0");
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.devicename", "/dev/uio0");
//config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
2019-01-31 14:36:11 +00:00
//if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
//{
// config->set_property("Acquisition.acquire_pilot", "false"); -- ALREADY THE DEFAULT VALUE
//}
std::shared_ptr<AcquisitionInterface> acquisition;
std::string System_and_Signal;
struct DMA_handler_args_obs_test args;
//create the correspondign acquisition block according to the desired tracking signal
//printf("AAAAAAAAAAAAAAAAAAAAA\n");
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.select_queue_Fpga", "0");
//config->set_property("Acquisition.sampled_ms", "1");
//printf("AAAAAAAAAAAAAAAAAAAAA2222\n");
tmp_gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L1 CA";
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
////acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFineDoppler>(config.get(), "Acquisition", 1, 0);
//acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
args.freq_band = 0;
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.select_queue_Fpga", "0");
//config->set_property("Acquisition.sampled_ms", "4");
tmp_gnss_synchro.System = 'E';
std::string signal = "1B";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E1B";
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
//acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisition>(config.get(), "Acquisition", 1, 0);
args.freq_band = 0;
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.select_queue_Fpga", "1");
//config->set_property("Acquisition.sampled_ms", "1");
tmp_gnss_synchro.System = 'E';
std::string signal = "5X";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E5a";
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
//acquisition = std::make_shared<GalileoE5aPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
args.freq_band = 1;
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.select_queue_Fpga", "1");
//config->set_property("Acquisition.sampled_ms", "1");
tmp_gnss_synchro.System = 'G';
std::string signal = "L5";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L5I";
2019-01-31 14:36:11 +00:00
//config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_external_signal_acquisition_dwells));
//acquisition = std::make_shared<GpsL5iPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
args.freq_band = 1;
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
acquisition->set_channel(0);
acquisition->set_threshold(config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold));
acquisition->connect(top_block);
std::string file = FLAGS_signal_file;
const char* file_name = file.c_str();
// struct DMA_handler_args_obs_test args;
boost::shared_ptr<Acquisition_msg_rx> msg_rx;
try
{
msg_rx = Acquisition_msg_rx_make();
}
catch (const std::exception& e)
{
std::cout << "Failure connecting the message port system: " << e.what() << std::endl;
exit(0);
}
msg_rx->top_block = top_block;
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
// 5. Run the flowgraph
// Get visible GPS satellites (positive acquisitions with Doppler measurements)
// record startup time
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds;
start = std::chrono::system_clock::now();
bool start_msg = true;
unsigned int MAX_PRN_IDX = 0;
switch (tmp_gnss_synchro.System)
{
case 'G':
MAX_PRN_IDX = 33;
break;
case 'E':
MAX_PRN_IDX = 37;
break;
default:
MAX_PRN_IDX = 33;
}
setup_fpga_switch_obs_test();
2019-01-31 14:36:11 +00:00
unsigned int code_length;
unsigned int nsamples_to_transfer;
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq_acquisition) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
//printf("dddddd code_length = %d nsamples_to_transfer = %d\n", code_length, nsamples_to_transfer);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq_acquisition) / (GALILEO_E1_CODE_CHIP_RATE_HZ / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E1_CODE_CHIP_RATE_HZ / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
2019-01-31 14:36:11 +00:00
//printf("dddddd code_length = %d nsamples_to_transfer = %d\n", code_length, nsamples_to_transfer);
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq_acquisition) / GALILEO_E5A_CODE_CHIP_RATE_HZ * static_cast<double>(GALILEO_E5A_CODE_LENGTH_CHIPS)));
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E5A_CODE_CHIP_RATE_HZ / GALILEO_E5A_CODE_LENGTH_CHIPS)));
2019-01-31 14:36:11 +00:00
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq_acquisition) / (GPS_L5I_CODE_RATE_HZ / static_cast<double>(GPS_L5I_CODE_LENGTH_CHIPS))));
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L5I_CODE_RATE_HZ / GPS_L5I_CODE_LENGTH_CHIPS)));
2019-01-31 14:36:11 +00:00
}
2019-01-31 14:36:11 +00:00
float nbits = ceilf(log2f((float)code_length*2));
unsigned int fft_size = pow(2, nbits);
unsigned int nsamples_total = fft_size;
//printf("EEEEEEEEEEEEEEEEEEEEE nbits = %f nsamples_total = %d\n", nbits, fft_size);
2019-01-31 14:36:11 +00:00
int acq_doppler_max = config->property("Acquisition.doppler_max", FLAGS_external_signal_acquisition_doppler_max_hz);
int acq_doppler_step = config->property("Acquisition.doppler_step", FLAGS_external_signal_acquisition_doppler_step_hz);
/*
2019-01-31 14:36:11 +00:00
if (doppler_loop_control_in_sw_obs_test == 1)
{
2019-01-31 14:36:11 +00:00
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
//printf("EEEEEEEEEEEEEEEEEEEEEEE2\n");
acquisition_GpsL1Ca_Fpga->set_single_doppler_flag(1);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
acquisition_GpsE1_Fpga->set_single_doppler_flag(1);
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsE5a_Fpga->set_single_doppler_flag(1);
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsL5_Fpga->set_single_doppler_flag(1);
}
2019-01-31 14:36:11 +00:00
int num_doppler_steps = (2*acq_doppler_max)/acq_doppler_step + 1;
2019-01-31 14:36:11 +00:00
float result_table[MAX_PRN_IDX][num_doppler_steps][3];
2019-01-31 14:36:11 +00:00
uint32_t index_debug[MAX_PRN_IDX];
uint32_t samplestamp_debug[MAX_PRN_IDX];
2019-01-31 14:36:11 +00:00
for (unsigned int PRN = 1; PRN < MAX_PRN_IDX; PRN++)
//for (unsigned int PRN = 6; PRN < 8; PRN++)
{
2019-01-31 14:36:11 +00:00
//printf("PRN %d\n", PRN);
uint32_t max_index = 0;
float max_magnitude = 0.0;
float second_magnitude = 0.0;
uint64_t initial_sample = 0;
//float power_sum = 0;
uint32_t doppler_index = 0;
uint32_t max_index_iteration;
uint32_t total_fft_scaling_factor;
uint32_t fw_fft_scaling_factor;
float max_magnitude_iteration;
float second_magnitude_iteration;
uint64_t initial_sample_iteration;
//float power_sum_iteration;
uint32_t doppler_index_iteration;
int doppler_shift_selected;
int doppler_num = 0;
for (int doppler_shift = -acq_doppler_max;doppler_shift <= acq_doppler_max;doppler_shift = doppler_shift + acq_doppler_step)
{
2019-01-31 14:36:11 +00:00
//printf("main loop doppler_shift = %d\n", doppler_shift);
tmp_gnss_synchro.PRN = PRN;
2019-01-31 14:36:11 +00:00
pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 0;
pthread_mutex_unlock(&mutex_obs_test);
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsL1Ca_Fpga->reset_acquisition(); // reset the whole system including the sample counters
2019-01-31 14:36:11 +00:00
acquisition_GpsL1Ca_Fpga->set_doppler_max(doppler_shift);
acquisition_GpsL1Ca_Fpga->set_doppler_step(0);
acquisition_GpsL1Ca_Fpga->set_gnss_synchro(&tmp_gnss_synchro);
acquisition_GpsL1Ca_Fpga->init();
acquisition_GpsL1Ca_Fpga->set_local_code();
args.freq_band = 0;
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
//printf("starting configuring acquisition\n");
acquisition_GpsE1_Fpga->reset_acquisition(); // reset the whole system including the sample counters
2019-01-31 14:36:11 +00:00
acquisition_GpsE1_Fpga->set_doppler_max(doppler_shift);
acquisition_GpsE1_Fpga->set_doppler_step(0);
acquisition_GpsE1_Fpga->set_gnss_synchro(&tmp_gnss_synchro);
acquisition_GpsE1_Fpga->init();
acquisition_GpsE1_Fpga->set_local_code();
args.freq_band = 0;
//printf("ffffffffffff ending configuring acquisition\n");
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsE5a_Fpga->reset_acquisition(); // reset the whole system including the sample counters
2019-01-31 14:36:11 +00:00
acquisition_GpsE5a_Fpga->set_doppler_max(doppler_shift);
acquisition_GpsE5a_Fpga->set_doppler_step(0);
acquisition_GpsE5a_Fpga->set_gnss_synchro(&tmp_gnss_synchro);
acquisition_GpsE5a_Fpga->init();
acquisition_GpsE5a_Fpga->set_local_code();
args.freq_band = 1;
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsL5_Fpga->reset_acquisition(); // reset the whole system including the sample counters
2019-01-31 14:36:11 +00:00
acquisition_GpsL5_Fpga->set_doppler_max(doppler_shift);
acquisition_GpsL5_Fpga->set_doppler_step(0);
acquisition_GpsL5_Fpga->set_gnss_synchro(&tmp_gnss_synchro);
acquisition_GpsL5_Fpga->init();
acquisition_GpsL5_Fpga->set_local_code();
args.freq_band = 1;
}
args.file = file;
if ((implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0) or (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0))
{
//printf("gggggggg \n");
//----------------------------------------------------------------------------------
// send the previous samples to set the downsampling filter in a good condition
2019-01-31 14:36:11 +00:00
send_samples_start_obs_test = 0;
if (test_observables_skip_samples_already_used == 1)
{
args.skip_used_samples = (PRN -1)*fft_size - DOWNAMPLING_FILTER_INIT_SAMPLES; // set the counter 2000 samples before
}
else
{
args.skip_used_samples = - DOWNAMPLING_FILTER_INIT_SAMPLES; // set the counter 2000 samples before
}
args.nsamples_tx = DOWNAMPLING_FILTER_INIT_SAMPLES + DOWNSAMPLING_FILTER_DELAY + DOWNSAMPLING_FILTER_OFFSET_SAMPLES; //50000; // max size of the FFT
//printf("sending pre init %d\n", args.nsamples_tx);
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
pthread_mutex_lock(&mutex);
send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex);
pthread_join(thread_DMA, NULL);
send_samples_start_obs_test = 0;
2019-01-31 14:36:11 +00:00
//printf("finished sending samples init filter status and back to main thread\n");
//-----------------------------------------------------------------------------------
// debug
args.nsamples_tx = nsamples_to_transfer; //fft_size; //50000; // max size of the FFT
2019-01-31 14:36:11 +00:00
if (test_observables_skip_samples_already_used == 1)
{
args.skip_used_samples = (PRN -1)*fft_size + DOWNSAMPLING_FILTER_DELAY + DOWNSAMPLING_FILTER_OFFSET_SAMPLES;
}
else
{
args.skip_used_samples = DOWNSAMPLING_FILTER_DELAY + DOWNSAMPLING_FILTER_OFFSET_SAMPLES;
}
}
else
{
// debug
args.nsamples_tx = nsamples_to_transfer; //fft_size; //50000; // max size of the FFT
2019-01-31 14:36:11 +00:00
if (test_observables_skip_samples_already_used == 1)
{
args.skip_used_samples = (PRN -1)*fft_size;
}
else
{
args.skip_used_samples = 0;
}
}
// create DMA child process
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
msg_rx->rx_message = 0;
top_block->start();
2019-01-31 14:36:11 +00:00
pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 1;
2019-01-31 14:36:11 +00:00
pthread_mutex_unlock(&mutex_obs_test);
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
acquisition_GpsL1Ca_Fpga->reset();
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
acquisition_GpsE1_Fpga->reset();
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
acquisition_GpsE5a_Fpga->reset();
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
2019-01-31 14:36:11 +00:00
acquisition_GpsL5_Fpga->reset();
}
if (start_msg == true)
{
std::cout << "Reading external signal file: " << FLAGS_signal_file << std::endl;
std::cout << "Searching for " << System_and_Signal << " Satellites..." << std::endl;
std::cout << "[";
start_msg = false;
}
// wait for the child DMA process to finish
pthread_join(thread_DMA, NULL);
2019-01-31 14:36:11 +00:00
pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 0;
2019-01-31 14:36:11 +00:00
pthread_mutex_unlock(&mutex_obs_test);
2019-01-31 14:36:11 +00:00
while (msg_rx->rx_message == 0)
{
usleep(100000);
}
2019-01-31 14:36:11 +00:00
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsL1Ca_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
//acquisition_GpsL1Ca_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
//printf("iiiiiiiiiiiiii\n");
acquisition_GpsE1_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
//acquisition_GpsE1_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsE5a_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
//acquisition_GpsE5a_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition_GpsL5_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
//acquisition_GpsL5_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
}
2019-01-31 14:36:11 +00:00
result_table[PRN][doppler_num][0] = max_magnitude_iteration;
result_table[PRN][doppler_num][1] = second_magnitude_iteration;
result_table[PRN][doppler_num][2] = total_fft_scaling_factor;
doppler_num = doppler_num + 1;
2019-01-31 14:36:11 +00:00
if ((implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0) or (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0))
{
//printf("jjjjjjjjjjjjjjj\n");
if (max_magnitude_iteration > max_magnitude)
{
int interpolation_factor = 4;
index_debug[PRN - 1] = max_index_iteration;
max_index = max_index_iteration; // - interpolation_factor*(DOWNSAMPLING_FILTER_DELAY - 1);
max_magnitude = max_magnitude_iteration;
second_magnitude = second_magnitude_iteration;
samplestamp_debug[PRN - 1] = initial_sample_iteration;
initial_sample = 0; //initial_sample_iteration;
doppler_index = doppler_index_iteration;
doppler_shift_selected = doppler_shift;
}
}
else
{
if (max_magnitude_iteration > max_magnitude)
{
max_index = max_index_iteration;
max_magnitude = max_magnitude_iteration;
second_magnitude = second_magnitude_iteration;
initial_sample = initial_sample_iteration;
doppler_index = doppler_index_iteration;
doppler_shift_selected = doppler_shift;
}
}
top_block->stop();
}
// power_sum = (power_sum - max_magnitude) / (fft_size - 1);
// float test_statistics = (max_magnitude / power_sum);
// float threshold = config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold);
// if (test_statistics > threshold)
float test_statistics = max_magnitude/second_magnitude;
float threshold = config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold);
if (test_statistics > threshold)
{
std::cout << " " << PRN << " ";
//doppler_measurements_map.insert(std::pair<int, double>(PRN, static_cast<double>(doppler_shift_selected)));
//code_delay_measurements_map.insert(std::pair<int, double>(PRN, static_cast<double>(max_index % nsamples_total)));
//acq_samplestamp_map.insert(std::pair<int, double>(PRN, initial_sample)); // should be 0 (first sample upon which acq starts is always 0 in this case)
tmp_gnss_synchro.Acq_doppler_hz = doppler_shift_selected;
tmp_gnss_synchro.Acq_delay_samples = max_index;
tmp_gnss_synchro.Acq_samplestamp_samples = initial_sample; // delay due to the downsampling filter in the acquisition
gnss_synchro_vec.push_back(tmp_gnss_synchro);
}
else
{
std::cout << " . ";
}
std::cout.flush();
}
uint32_t max_index = 0;
uint32_t total_fft_scaling_factor;
//uint32_t fw_fft_scaling_factor;
float max_magnitude = 0.0;
uint64_t initial_sample = 0;
float second_magnitude = 0;
float peak_to_power = 0;
float test_statistics;
uint32_t doppler_index = 0;
if (test_observables_show_results_table == 1)
{
for (unsigned int PRN = 1; PRN < MAX_PRN_IDX; PRN++)
{
std::cout << std::endl << "############################################ Results for satellite " << PRN << std::endl;
int doppler_num = 0;
for (int doppler_shift = -acq_doppler_max;doppler_shift <= acq_doppler_max;doppler_shift = doppler_shift + acq_doppler_step)
{
max_magnitude = result_table[PRN][doppler_num][0];
//power_sum = result_table[PRN][doppler_num][1];
second_magnitude = result_table[PRN][doppler_num][1];
total_fft_scaling_factor = result_table[PRN][doppler_num][2];
doppler_num = doppler_num + 1;
std::cout << "==================== Doppler shift " << doppler_shift << std::endl;
std::cout << "Max magnitude = " << max_magnitude << std::endl;
std::cout << "Second magnitude = " << second_magnitude << std::endl;
std::cout << "FFT total scaling factor = " << total_fft_scaling_factor << std::endl;
test_statistics = (max_magnitude / second_magnitude);
std::cout << " test_statistics = " << test_statistics << std::endl;
}
int dummy_val;
std::cout << "Enter a value to continue";
std::cin >> dummy_val;
}
}
}
else // DOPPLER CONTROL IN HW
{
*/
2019-01-31 14:36:11 +00:00
for (unsigned int PRN = 1; PRN < MAX_PRN_IDX; PRN++)
//for (unsigned int PRN = 0; PRN < 17; PRN++)
{
uint32_t max_index = 0;
float max_magnitude = 0.0;
float second_magnitude = 0.0;
uint64_t initial_sample = 0;
//float power_sum = 0;
uint32_t doppler_index = 0;
uint32_t max_index_iteration;
uint32_t total_fft_scaling_factor;
uint32_t fw_fft_scaling_factor;
float max_magnitude_iteration;
float second_magnitude_iteration;
uint64_t initial_sample_iteration;
//float power_sum_iteration;
uint32_t doppler_index_iteration;
int doppler_shift_selected;
int doppler_num = 0;
tmp_gnss_synchro.PRN = PRN;
acquisition->stop_acquisition(); // reset the whole system including the sample counters
acquisition->set_doppler_max(acq_doppler_max);
acquisition->set_doppler_step(acq_doppler_step);
acquisition->set_gnss_synchro(&tmp_gnss_synchro);
acquisition->init();
acquisition->set_local_code();
2019-01-31 14:36:11 +00:00
args.file = file;
send_samples_start_obs_test = 0;
if ((implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0) or (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0))
{
//printf("gggggggg \n");
//----------------------------------------------------------------------------------
// send the previous samples to set the downsampling filter in a good condition
//send_samples_start = 0;
args.skip_used_samples = - DOWNAMPLING_FILTER_INIT_SAMPLES; // set the counter 2000 samples before
args.nsamples_tx = DOWNAMPLING_FILTER_INIT_SAMPLES + DOWNSAMPLING_FILTER_DELAY + DOWNSAMPLING_FILTER_OFFSET_SAMPLES; //50000; // max size of the FFT
//printf("sending pre init %d\n", args.nsamples_tx);
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
pthread_mutex_lock(&mutex);
send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex);
pthread_join(thread_DMA, NULL);
send_samples_start_obs_test = 0;
//printf("finished sending samples init filter status\n");
//-----------------------------------------------------------------------------------
// debug
args.nsamples_tx = nsamples_to_transfer; //fft_size; //50000; // max size of the FFT
args.skip_used_samples = DOWNSAMPLING_FILTER_DELAY + DOWNSAMPLING_FILTER_OFFSET_SAMPLES;
}
else
{
// debug
args.nsamples_tx = nsamples_to_transfer; //fft_size; //50000; // max size of the FFT
args.skip_used_samples = 0;
}
// create DMA child process
//printf("||||||||1 args freq_band = %d\n", args.freq_band);
//printf("sending samples main DMA %d\n", args.nsamples_tx);
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
msg_rx->rx_message = 0;
top_block->start();
pthread_mutex_lock(&mutex);
send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex);
acquisition->reset(); // set active
2019-01-31 14:36:11 +00:00
// pthread_mutex_lock(&mutex); // it doesn't work if it is done here
// send_samples_start = 1;
// pthread_mutex_unlock(&mutex);
if (start_msg == true)
{
std::cout << "Reading external signal file: " << FLAGS_signal_file << std::endl;
std::cout << "Searching for " << System_and_Signal << " Satellites..." << std::endl;
std::cout << "[";
start_msg = false;
}
// wait for the child DMA process to finish
pthread_join(thread_DMA, NULL);
pthread_mutex_lock(&mutex);
send_samples_start_obs_test = 0;
pthread_mutex_unlock(&mutex);
// while (msg_rx->rx_message == 0)
// {
// usleep(100000);
// }
// the DMA sends the exact number of samples needed for the acquisition.
// however because of the LPF in the GPS L1/Gal E1 acquisition, this calculation is approximate
// and some extra samples might be sent. Wait at least once to give time the HW to consume any extra
// sample the DMA might have sent.
do {
usleep(100000);
} while (msg_rx->rx_message == 0);
2019-01-31 14:36:11 +00:00
if (msg_rx->rx_message == 1)
{
std::cout << " " << PRN << " ";
tmp_gnss_synchro.Acq_doppler_hz = tmp_gnss_synchro.Acq_doppler_hz;
tmp_gnss_synchro.Acq_delay_samples = tmp_gnss_synchro.Acq_delay_samples;
tmp_gnss_synchro.Acq_samplestamp_samples = 0; // do not take into account the filter internal state initialisation
tmp_gnss_synchro.Acq_samplestamp_samples = tmp_gnss_synchro.Acq_samplestamp_samples; // delay due to the downsampling filter in the acquisition
gnss_synchro_vec.push_back(tmp_gnss_synchro);
// doppler_measurements_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_doppler_hz));
// code_delay_measurements_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_delay_samples));
// tmp_gnss_synchro.Acq_samplestamp_samples = 0; // do not take into account the filter internal state initialisation
// acq_samplestamp_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_samplestamp_samples));
2019-01-31 14:36:11 +00:00
}
else
{
std::cout << " . ";
}
2019-01-31 14:36:11 +00:00
// while (msg_rx->rx_message == 0)
// {
// usleep(100000);
// }
// if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
// {
// acquisition_GpsL1Ca_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
// //acquisition_GpsL1Ca_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
// }
// else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
// {
// //printf("iiiiiiiiiiiiii\n");
// acquisition_GpsE1_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
// //acquisition_GpsE1_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
// }
// else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
// {
// acquisition_GpsE5a_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
// //acquisition_GpsE5a_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
// }
// else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
// {
// acquisition_GpsL5_Fpga->read_acquisition_results(&max_index_iteration, &max_magnitude_iteration, &second_magnitude_iteration, &initial_sample_iteration, &doppler_index_iteration, &total_fft_scaling_factor);
// //acquisition_GpsL5_Fpga->read_fpga_total_scale_factor(&total_fft_scaling_factor, &fw_fft_scaling_factor);
// }
//
// if ((implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0) or (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0))
// {
// int interpolation_factor = 4;
// //index_debug[PRN - 1] = max_index_iteration;
// max_index = max_index_iteration; // - interpolation_factor*(DOWNSAMPLING_FILTER_DELAY - 1);
// max_magnitude = max_magnitude_iteration;
// second_magnitude = second_magnitude_iteration;
// //samplestamp_debug[PRN - 1] = initial_sample_iteration;
// initial_sample = 0; //initial_sample_iteration;
// doppler_index = doppler_index_iteration;
// doppler_shift_selected = -acq_doppler_max + acq_doppler_step * (doppler_index_iteration - 1);
// }
// else
// {
// max_index = max_index_iteration;
// max_magnitude = max_magnitude_iteration;
// second_magnitude = second_magnitude_iteration;
// initial_sample = initial_sample_iteration;
// doppler_index = doppler_index_iteration;
// doppler_shift_selected = -acq_doppler_max + acq_doppler_step * (doppler_index_iteration - 1);
// }
top_block->stop();
// float test_statistics = max_magnitude/second_magnitude;
// float threshold = config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold);
// if (test_statistics > threshold)
// {
// //printf("XXXXXXXXXXXXXXXXXXXXXXXXXXX max index = %d = %d \n", max_index, max_index % nsamples_total);
// std::cout << " " << PRN << " ";
// doppler_measurements_map.insert(std::pair<int, double>(PRN, static_cast<double>(doppler_shift_selected)));
// code_delay_measurements_map.insert(std::pair<int, double>(PRN, static_cast<double>(max_index % nsamples_total)));
// code_delay_measurements_map.insert(std::pair<int, double>(PRN, static_cast<double>(max_index)));
// acq_samplestamp_map.insert(std::pair<int, double>(PRN, initial_sample)); // should be 0 (first sample upon which acq starts is always 0 in this case)
// }
// else
// {
// std::cout << " . ";
// }
std::cout.flush();
/* } */
2019-01-31 14:36:11 +00:00
}
// }
std::cout << "]" << std::endl;
std::cout << "-------------------------------------------\n";
for (auto& x : gnss_synchro_vec)
{
std::cout << "DETECTED SATELLITE " << System_and_Signal
<< " PRN: " << x.PRN
<< " with Doppler: " << x.Acq_doppler_hz
<< " [Hz], code phase: " << x.Acq_delay_samples
<< " [samples] at signal SampleStamp " << x.Acq_samplestamp_samples << "\n";
}
// report the elapsed time
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
std::cout << "Total signal acquisition run time "
<< elapsed_seconds.count()
<< " [seconds]" << std::endl;
if (gnss_synchro_vec.size() > 0)
{
return true;
}
else
{
return false;
}
return true;
}
void HybridObservablesTestFpga::configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols)
{
config = std::make_shared<InMemoryConfiguration>();
config->set_property("Tracking.dump", "true");
config->set_property("Tracking.dump_filename", "./tracking_ch_");
config->set_property("Tracking.implementation", implementation);
config->set_property("Tracking.item_type", "gr_complex");
config->set_property("Tracking.pll_bw_hz", std::to_string(PLL_wide_bw_hz));
config->set_property("Tracking.dll_bw_hz", std::to_string(DLL_wide_bw_hz));
config->set_property("Tracking.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
config->set_property("Tracking.pll_bw_narrow_hz", std::to_string(PLL_narrow_bw_hz));
config->set_property("Tracking.dll_bw_narrow_hz", std::to_string(DLL_narrow_bw_hz));
config->set_property("Observables.implementation", "Hybrid_Observables");
config->set_property("Observables.dump", "true");
config->set_property("TelemetryDecoder.dump", "true");
gnss_synchro_master.Channel_ID = 0;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
std::string System_and_Signal;
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
gnss_synchro_master.System = 'G';
std::string signal = "1C";
System_and_Signal = "GPS L1 CA";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.early_late_space_narrow_chips", "0.5");
config->set_property("TelemetryDecoder.implementation", "GPS_L1_CA_Telemetry_Decoder");
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
gnss_synchro_master.System = 'E';
std::string signal = "1B";
System_and_Signal = "Galileo E1B";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.15");
config->set_property("Tracking.very_early_late_space_chips", "0.6");
config->set_property("Tracking.early_late_space_narrow_chips", "0.15");
config->set_property("Tracking.very_early_late_space_narrow_chips", "0.6");
config->set_property("Tracking.track_pilot", "true");
config->set_property("TelemetryDecoder.implementation", "Galileo_E1B_Telemetry_Decoder");
}
// else if (implementation.compare("GPS_L2_M_DLL_PLL_Tracking") == 0)
// {
// gnss_synchro_master.System = 'G';
// std::string signal = "2S";
// System_and_Signal = "GPS L2CM";
// const char* str = signal.c_str(); // get a C style null terminated string
// std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
//
// config->set_property("Tracking.early_late_space_chips", "0.5");
// config->set_property("Tracking.track_pilot", "false");
//
// config->set_property("TelemetryDecoder.implementation", "GPS_L2C_Telemetry_Decoder");
// }
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0) // or implementation.compare("Galileo_E5a_DLL_PLL_Tracking_b") == 0)
{
gnss_synchro_master.System = 'E';
std::string signal = "5X";
System_and_Signal = "Galileo E5a";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
//if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_b") == 0)
// {
// config->supersede_property("Tracking.implementation", std::string("Galileo_E5a_DLL_PLL_Tracking"));
// }
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
config->set_property("TelemetryDecoder.implementation", "Galileo_E5a_Telemetry_Decoder");
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
gnss_synchro_master.System = 'G';
std::string signal = "L5";
System_and_Signal = "GPS L5I";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(gnss_synchro_master.Signal), str, 3); // copy string into synchro char array: 2 char + null
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
config->set_property("TelemetryDecoder.implementation", "GPS_L5_Telemetry_Decoder");
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
std::cout << "*****************************************\n";
std::cout << "*** Tracking configuration parameters ***\n";
std::cout << "*****************************************\n";
std::cout << "Signal: " << System_and_Signal << "\n";
std::cout << "implementation: " << config->property("Tracking.implementation", std::string("undefined")) << " \n";
std::cout << "pll_bw_hz: " << config->property("Tracking.pll_bw_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_hz: " << config->property("Tracking.dll_bw_hz", 0.0) << " Hz\n";
std::cout << "pll_bw_narrow_hz: " << config->property("Tracking.pll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_narrow_hz: " << config->property("Tracking.dll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "extend_correlation_symbols: " << config->property("Tracking.extend_correlation_symbols", 0) << " Symbols\n";
std::cout << "*****************************************\n";
std::cout << "*****************************************\n";
}
void HybridObservablesTestFpga::check_results_carrier_phase(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
std::string data_title)
{
//1. True value interpolation to match the measurement times
double t0 = measured_ch0(0, 0);
int size1 = measured_ch0.col(0).n_rows;
double t1 = measured_ch0(size1 - 1, 0);
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
//conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_phase_interp;
arma::interp1(true_tow_s, true_ch0.col(3), t, true_ch0_phase_interp);
arma::vec meas_ch0_phase_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(3), t, meas_ch0_phase_interp);
//2. RMSE
arma::vec err_ch0_cycles;
//compute error without the accumulated carrier phase offsets (which depends on the receiver starting time)
err_ch0_cycles = meas_ch0_phase_interp - true_ch0_phase_interp - meas_ch0_phase_interp(0) + true_ch0_phase_interp(0);
arma::vec err2_ch0 = arma::square(err_ch0_cycles);
double rmse_ch0 = sqrt(arma::mean(err2_ch0));
//3. Mean err and variance
double error_mean_ch0 = arma::mean(err_ch0_cycles);
double error_var_ch0 = arma::var(err_ch0_cycles);
// 4. Peaks
double max_error_ch0 = arma::max(err_ch0_cycles);
double min_error_ch0 = arma::min(err_ch0_cycles);
//5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << " Accumulated Carrier phase RMSE = "
<< rmse_ch0 << ", mean = " << error_mean_ch0
<< ", stdev = " << sqrt(error_var_ch0)
<< " (max,min) = " << max_error_ch0
<< "," << min_error_ch0
<< " [cycles]" << std::endl;
std::cout.precision(ss);
//plots
if (FLAGS_show_plots)
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Accumulated Carrier phase error [cycles]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Phase error [cycles]");
//conversion between arma::vec and std:vector
std::vector<double> error_vec(err_ch0_cycles.colptr(0), err_ch0_cycles.colptr(0) + err_ch0_cycles.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, error_vec,
"Carrier Phase error");
g3.set_legend();
g3.savetops(data_title + "Carrier_phase_error");
g3.showonscreen(); // window output
}
//check results against the test tolerance
ASSERT_LT(rmse_ch0, 0.25);
ASSERT_LT(error_mean_ch0, 0.2);
ASSERT_GT(error_mean_ch0, -0.2);
ASSERT_LT(error_var_ch0, 0.5);
ASSERT_LT(max_error_ch0, 0.5);
ASSERT_GT(min_error_ch0, -0.5);
}
void HybridObservablesTestFpga::check_results_carrier_phase_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title)
{
//1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
//conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_carrier_phase_interp;
arma::vec true_ch1_carrier_phase_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(3), t, true_ch0_carrier_phase_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(3), t, true_ch1_carrier_phase_interp);
arma::vec meas_ch0_carrier_phase_interp;
arma::vec meas_ch1_carrier_phase_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(3), t, meas_ch0_carrier_phase_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(3), t, meas_ch1_carrier_phase_interp);
// generate double difference accumulated carrier phases
//compute error without the accumulated carrier phase offsets (which depends on the receiver starting time)
arma::vec delta_true_carrier_phase_cycles = (true_ch0_carrier_phase_interp - true_ch0_carrier_phase_interp(0)) - (true_ch1_carrier_phase_interp - true_ch1_carrier_phase_interp(0));
arma::vec delta_measured_carrier_phase_cycles = (meas_ch0_carrier_phase_interp - meas_ch0_carrier_phase_interp(0)) - (meas_ch1_carrier_phase_interp - meas_ch1_carrier_phase_interp(0));
//2. RMSE
arma::vec err;
err = delta_measured_carrier_phase_cycles - delta_true_carrier_phase_cycles;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Carrier Phase RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [Cycles]" << std::endl;
std::cout.precision(ss);
//plots
if (FLAGS_show_plots)
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Carrier Phase error [Cycles]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Carrier Phase error [Cycles]");
//conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Carrier Phase error");
g3.set_legend();
g3.savetops(data_title + "double_diff_carrier_phase_error");
g3.showonscreen(); // window output
}
//check results against the test tolerance
ASSERT_LT(rmse, 0.25);
ASSERT_LT(error_mean, 0.2);
ASSERT_GT(error_mean, -0.2);
ASSERT_LT(error_var, 0.5);
ASSERT_LT(max_error, 0.5);
ASSERT_GT(min_error, -0.5);
}
void HybridObservablesTestFpga::check_results_carrier_doppler_double_diff(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title)
{
//1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
//conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_carrier_doppler_interp;
arma::vec true_ch1_carrier_doppler_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(2), t, true_ch0_carrier_doppler_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(2), t, true_ch1_carrier_doppler_interp);
arma::vec meas_ch0_carrier_doppler_interp;
arma::vec meas_ch1_carrier_doppler_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(2), t, meas_ch0_carrier_doppler_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(2), t, meas_ch1_carrier_doppler_interp);
// generate double difference carrier Doppler
arma::vec delta_true_carrier_doppler_cycles = true_ch0_carrier_doppler_interp - true_ch1_carrier_doppler_interp;
arma::vec delta_measured_carrier_doppler_cycles = meas_ch0_carrier_doppler_interp - meas_ch1_carrier_doppler_interp;
//2. RMSE
arma::vec err;
err = delta_measured_carrier_doppler_cycles - delta_true_carrier_doppler_cycles;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Carrier Doppler RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [Hz]" << std::endl;
std::cout.precision(ss);
//plots
if (FLAGS_show_plots)
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Carrier Doppler error [Hz]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Carrier Doppler error [Hz]");
//conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Carrier Doppler error");
g3.set_legend();
g3.savetops(data_title + "double_diff_carrier_doppler_error");
g3.showonscreen(); // window output
}
//check results against the test tolerance
ASSERT_LT(error_mean, 5);
ASSERT_GT(error_mean, -5);
//assuming PLL BW=35
ASSERT_LT(error_var, 200);
ASSERT_LT(max_error, 70);
ASSERT_GT(min_error, -70);
ASSERT_LT(rmse, 30);
}
void HybridObservablesTestFpga::check_results_carrier_doppler(
arma::mat& true_ch0,
arma::vec& true_tow_s,
arma::mat& measured_ch0,
std::string data_title)
{
//1. True value interpolation to match the measurement times
double t0 = measured_ch0(0, 0);
int size1 = measured_ch0.col(0).n_rows;
double t1 = measured_ch0(size1 - 1, 0);
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
//conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_doppler_interp;
arma::interp1(true_tow_s, true_ch0.col(2), t, true_ch0_doppler_interp);
arma::vec meas_ch0_doppler_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(2), t, meas_ch0_doppler_interp);
//2. RMSE
arma::vec err_ch0_hz;
//compute error
err_ch0_hz = meas_ch0_doppler_interp - true_ch0_doppler_interp;
arma::vec err2_ch0 = arma::square(err_ch0_hz);
double rmse_ch0 = sqrt(arma::mean(err2_ch0));
//3. Mean err and variance
double error_mean_ch0 = arma::mean(err_ch0_hz);
double error_var_ch0 = arma::var(err_ch0_hz);
// 4. Peaks
double max_error_ch0 = arma::max(err_ch0_hz);
double min_error_ch0 = arma::min(err_ch0_hz);
//5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Carrier Doppler RMSE = "
<< rmse_ch0 << ", mean = " << error_mean_ch0
<< ", stdev = " << sqrt(error_var_ch0)
<< " (max,min) = " << max_error_ch0
<< "," << min_error_ch0
<< " [Hz]" << std::endl;
std::cout.precision(ss);
//plots
if (FLAGS_show_plots)
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Carrier Doppler error [Hz]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Carrier Doppler error [Hz]");
//conversion between arma::vec and std:vector
std::vector<double> error_vec(err_ch0_hz.colptr(0), err_ch0_hz.colptr(0) + err_ch0_hz.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, error_vec,
"Carrier Doppler error");
g3.set_legend();
g3.savetops(data_title + "Carrier_doppler_error");
g3.showonscreen(); // window output
}
//check results against the test tolerance
ASSERT_LT(error_mean_ch0, 5);
ASSERT_GT(error_mean_ch0, -5);
//assuming PLL BW=35
ASSERT_LT(error_var_ch0, 200);
ASSERT_LT(max_error_ch0, 70);
ASSERT_GT(min_error_ch0, -70);
ASSERT_LT(rmse_ch0, 30);
}
bool HybridObservablesTestFpga::save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename)
{
try
{
// WRITE MAT FILE
mat_t* matfp;
matvar_t* matvar;
filename.append(".mat");
std::cout << "save_mat_xy write " << filename << std::endl;
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT5);
if (reinterpret_cast<int64_t*>(matfp) != NULL)
{
size_t dims[2] = {1, x.size()};
matvar = Mat_VarCreate("x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &x[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &y[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
else
{
std::cout << "save_mat_xy: error creating file" << std::endl;
}
Mat_Close(matfp);
return true;
}
catch (const std::exception& ex)
{
std::cout << "save_mat_xy: " << ex.what() << std::endl;
return false;
}
}
void HybridObservablesTestFpga::check_results_code_pseudorange(
arma::mat& true_ch0,
arma::mat& true_ch1,
arma::vec& true_tow_ch0_s,
arma::vec& true_tow_ch1_s,
arma::mat& measured_ch0,
arma::mat& measured_ch1,
std::string data_title)
{
//1. True value interpolation to match the measurement times
double t0 = std::max(measured_ch0(0, 0), measured_ch1(0, 0));
int size1 = measured_ch0.col(0).n_rows;
int size2 = measured_ch1.col(0).n_rows;
double t1 = std::min(measured_ch0(size1 - 1, 0), measured_ch1(size2 - 1, 0));
arma::vec t = arma::linspace<arma::vec>(t0, t1, floor((t1 - t0) * 1e3));
//conversion between arma::vec and std:vector
arma::vec t_from_start = arma::linspace<arma::vec>(0, t1 - t0, floor((t1 - t0) * 1e3));
std::vector<double> time_vector(t_from_start.colptr(0), t_from_start.colptr(0) + t_from_start.n_rows);
arma::vec true_ch0_dist_interp;
arma::vec true_ch1_dist_interp;
arma::interp1(true_tow_ch0_s, true_ch0.col(1), t, true_ch0_dist_interp);
arma::interp1(true_tow_ch1_s, true_ch1.col(1), t, true_ch1_dist_interp);
arma::vec meas_ch0_dist_interp;
arma::vec meas_ch1_dist_interp;
arma::interp1(measured_ch0.col(0), measured_ch0.col(4), t, meas_ch0_dist_interp);
arma::interp1(measured_ch1.col(0), measured_ch1.col(4), t, meas_ch1_dist_interp);
// generate delta pseudoranges
arma::vec delta_true_dist_m = true_ch0_dist_interp - true_ch1_dist_interp;
arma::vec delta_measured_dist_m = meas_ch0_dist_interp - meas_ch1_dist_interp;
//2. RMSE
arma::vec err;
err = delta_measured_dist_m - delta_true_dist_m;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << data_title << "Double diff Pseudorange RMSE = "
<< rmse << ", mean = " << error_mean
<< ", stdev = " << sqrt(error_var)
<< " (max,min) = " << max_error
<< "," << min_error
<< " [meters]" << std::endl;
std::cout.precision(ss);
//plots
if (FLAGS_show_plots)
{
Gnuplot g3("linespoints");
g3.set_title(data_title + "Double diff Pseudorange error [m]");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Double diff Pseudorange error [m]");
//conversion between arma::vec and std:vector
std::vector<double> range_error_m(err.colptr(0), err.colptr(0) + err.n_rows);
g3.cmd("set key box opaque");
g3.plot_xy(time_vector, range_error_m,
"Double diff Pseudorrange error");
g3.set_legend();
g3.savetops(data_title + "double_diff_pseudorrange_error");
g3.showonscreen(); // window output
}
//check results against the test tolerance
ASSERT_LT(rmse, 3.0);
ASSERT_LT(error_mean, 1.0);
ASSERT_GT(error_mean, -1.0);
ASSERT_LT(error_var, 10.0);
ASSERT_LT(max_error, 10.0);
ASSERT_GT(min_error, -10.0);
}
bool HybridObservablesTestFpga::ReadRinexObs(std::vector<arma::mat>* obs_vec, Gnss_Synchro gnss)
{
// Open and read reference RINEX observables file
try
{
gpstk::Rinex3ObsStream r_ref(FLAGS_filename_rinex_obs);
r_ref.exceptions(std::ios::failbit);
gpstk::Rinex3ObsData r_ref_data;
gpstk::Rinex3ObsHeader r_ref_header;
gpstk::RinexDatum dataobj;
r_ref >> r_ref_header;
std::vector<bool> first_row;
gpstk::SatID prn;
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
first_row.push_back(true);
obs_vec->push_back(arma::zeros<arma::mat>(1, 4));
}
while (r_ref >> r_ref_data)
{
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
int myprn = gnss_synchro_vec.at(n).PRN;
switch (gnss.System)
{
case 'G':
prn = gpstk::SatID(myprn, gpstk::SatID::systemGPS);
break;
case 'E':
prn = gpstk::SatID(myprn, gpstk::SatID::systemGalileo);
break;
default:
prn = gpstk::SatID(myprn, gpstk::SatID::systemGPS);
}
gpstk::CommonTime time = r_ref_data.time;
double sow(static_cast<gpstk::GPSWeekSecond>(time).sow);
gpstk::Rinex3ObsData::DataMap::iterator pointer = r_ref_data.obs.find(prn);
if (pointer == r_ref_data.obs.end())
{
// PRN not present; do nothing
}
else
{
if (first_row.at(n) == false)
{
//insert next column
obs_vec->at(n).insert_rows(obs_vec->at(n).n_rows, 1);
}
else
{
first_row.at(n) = false;
}
if (strcmp("1C\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data; //C1C P1 (psudorange L1)
dataobj = r_ref_data.getObs(prn, "D1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data; //D1C Carrier Doppler
dataobj = r_ref_data.getObs(prn, "L1C", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data; //L1C Carrier Phase
}
else if (strcmp("1B\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L1B", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("2S\0", gnss.Signal) == 0) //L2M
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L2S", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("L5\0", gnss.Signal) == 0)
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L5I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else if (strcmp("5X\0", gnss.Signal) == 0) //Simulator gives RINEX with E5a+E5b
{
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 0) = sow;
dataobj = r_ref_data.getObs(prn, "C8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 1) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "D8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 2) = dataobj.data;
dataobj = r_ref_data.getObs(prn, "L8I", r_ref_header);
obs_vec->at(n)(obs_vec->at(n).n_rows - 1, 3) = dataobj.data;
}
else
{
std::cout << "ReadRinexObs unknown signal requested: " << gnss.Signal << std::endl;
return false;
}
}
}
} // end while
} // End of 'try' block
catch (const gpstk::FFStreamError& e)
{
std::cout << e;
return false;
}
catch (const gpstk::Exception& e)
{
std::cout << e;
return false;
}
catch (const std::exception& e)
{
std::cout << "Exception: " << e.what();
std::cout << "unknown error. I don't feel so well..." << std::endl;
return false;
}
std::cout << "ReadRinexObs info:" << std::endl;
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
std::cout << "SAT PRN " << gnss_synchro_vec.at(n).PRN << " RINEX epoch readed: " << obs_vec->at(n).n_rows << std::endl;
}
return true;
}
TEST_F(HybridObservablesTestFpga, ValidationOfResults)
{
// pointer to the DMA thread that sends the samples to the acquisition engine
pthread_t thread_DMA;
struct DMA_handler_args_obs_test args;
// Configure the signal generator
configure_generator();
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_disable_generator == false)
{
generate_signal();
}
else
{
//printf("PATH IS OK 0 \n");
}
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
// use generator or use an external capture file
if (FLAGS_enable_external_signal_file)
{
//printf("PATH IS OK 1 \n");
//create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
ASSERT_EQ(acquire_signal(), true);
}
else
{
Gnss_Synchro tmp_gnss_synchro;
tmp_gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(tmp_gnss_synchro.Signal, 2, 0);
std::istringstream ss(FLAGS_test_satellite_PRN_list);
std::string token;
while (std::getline(ss, token, ','))
{
tmp_gnss_synchro.PRN = boost::lexical_cast<int>(token);
gnss_synchro_vec.push_back(tmp_gnss_synchro);
}
}
//printf("KKKKKKKKK FIRST PART FINISHED\n");
//printf("@@@@@@@@@@@@@@@@@@@@@@@@@@ Signal Acquired\n");
configure_receiver(FLAGS_PLL_bw_hz_start,
FLAGS_DLL_bw_hz_start,
FLAGS_PLL_narrow_bw_hz,
FLAGS_DLL_narrow_bw_hz,
FLAGS_extend_correlation_symbols);
//printf("@@@@@@@@@@@@@@@@@@@@@@@@@@ Receiver Configured\n");
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
//setup the signal synchronization, simulating an acquisition
if (!FLAGS_enable_external_signal_file)
{
//printf("HERE\n");
//based on true observables metadata (for custom sdr generator)
//open true observables log file written by the simulator or based on provided RINEX obs
//std::vector<std::shared_ptr<tracking_true_obs_reader>> true_reader_vec;
std::vector<std::shared_ptr<Tracking_True_Obs_Reader>> true_reader_vec;
//read true data from the generator logs
true_reader_vec.push_back(std::make_shared<Tracking_True_Obs_Reader>());
std::cout << "Loading true observable data for PRN " << gnss_synchro_vec.at(n).PRN << std::endl;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(gnss_synchro_vec.at(n).PRN));
true_obs_file.append(".dat");
ASSERT_NO_THROW({
if (true_reader_vec.back()->open_obs_file(true_obs_file) == false)
{
throw std::exception();
};
}) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_NO_THROW({
if (true_reader_vec.back()->read_binary_obs() == false)
{
throw std::exception();
};
}) << "Failure reading true observables file";
//restart the epoch counter
true_reader_vec.back()->restart();
std::cout << "Initial Doppler [Hz]=" << true_reader_vec.back()->doppler_l1_hz << " Initial code delay [Chips]="
<< true_reader_vec.back()->prn_delay_chips << std::endl;
gnss_synchro_vec.at(n).Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_reader_vec.back()->prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD;
gnss_synchro_vec.at(n).Acq_doppler_hz = true_reader_vec.back()->doppler_l1_hz;
gnss_synchro_vec.at(n).Acq_samplestamp_samples = 0;
}
else
{
//printf("OR THERE\n");
//based on the signal acquisition process
std::cout << "Estimated Initial Doppler " << gnss_synchro_vec.at(n).Acq_doppler_hz
<< " [Hz], estimated Initial code delay " << gnss_synchro_vec.at(n).Acq_delay_samples << " [Samples]"
<< " Acquisition SampleStamp is " << gnss_synchro_vec.at(n).Acq_samplestamp_samples << std::endl;
//gnss_synchro_vec.at(n).Acq_samplestamp_samples = 0; // caution ! samplestamp_samples may not zero if doppler runs inside the FPGA
}
}
//printf("@@@@@@@@@@@@@@@@@@@@@@@@@@ First part is done\n");
unsigned int code_length;
//unsigned int nsamples_to_transfer;
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
//nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
//printf("sssssss code_length = %d \n", code_length);
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E1_CODE_CHIP_RATE_HZ / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
//nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)));
//printf("sssssss code_length = %d \n", code_length);
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / GALILEO_E5A_CODE_CHIP_RATE_HZ * static_cast<double>(GALILEO_E5A_CODE_LENGTH_CHIPS)));
//nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
//printf("sssssss code_length = %d \n", code_length);
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
code_length = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L5I_CODE_RATE_HZ / static_cast<double>(GPS_L5I_CODE_LENGTH_CHIPS))));
//nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
//printf("sssssss code_length = %d \n", code_length);
}
float nbits = ceilf(log2f((float)code_length*2));
unsigned int fft_size = pow(2, nbits);
// The HW has been reset after the acquisition phase when the acquisition class was destroyed.
// No more samples remained in the DMA. Therefore any intermediate state in the LPF of the
// GPS L1 / Galileo E1 filter has been cleared.
// During this test all the samples coming from the DMA are consumed so in principle there would be
// no need to reset the HW. However we need to clear the sample counter in each test. Therefore we have
// to reset the HW at the beginning of each test.
// instantiate the acquisition modules in order to use them to reset the HW.
// (note that the constructor of the acquisition modules resets the HW too)
std::shared_ptr<AcquisitionInterface> acquisition;
// reset the HW to clear the sample counters: the acquisition constructor generates a reset
if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation.compare("Galileo_E1_DLL_PLL_VEML_Tracking_Fpga") == 0)
{
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation.compare("Galileo_E5a_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else if (implementation.compare("GPS_L5_DLL_PLL_Tracking_Fpga") == 0)
{
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
std::vector<std::shared_ptr<TrackingInterface>> tracking_ch_vec;
std::vector<std::shared_ptr<TelemetryDecoderInterface>> tlm_ch_vec;
std::vector<gr::blocks::null_sink::sptr> null_sink_vec;
for (unsigned int n = 0; n < gnss_synchro_vec.size(); n++)
{
//set channels ids
gnss_synchro_vec.at(n).Channel_ID = n;
//create the tracking channels and create the telemetry decoders
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking", config->property("Tracking.implementation", std::string("undefined")), 1, 1);
tracking_ch_vec.push_back(std::dynamic_pointer_cast<TrackingInterface>(trk_));
std::shared_ptr<GNSSBlockInterface> tlm_ = factory->GetBlock(config, "TelemetryDecoder", config->property("TelemetryDecoder.implementation", std::string("undefined")), 1, 1);
tlm_ch_vec.push_back(std::dynamic_pointer_cast<TelemetryDecoderInterface>(tlm_));
//create null sinks for observables output
null_sink_vec.push_back(gr::blocks::null_sink::make(sizeof(Gnss_Synchro)));
ASSERT_NO_THROW({
tlm_ch_vec.back()->set_channel(gnss_synchro_vec.at(n).Channel_ID);
switch (gnss_synchro_master.System)
{
case 'G':
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("GPS"), gnss_synchro_vec.at(n).PRN));
break;
case 'E':
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("Galileo"), gnss_synchro_vec.at(n).PRN));
break;
default:
tlm_ch_vec.back()->set_satellite(Gnss_Satellite(std::string("GPS"), gnss_synchro_vec.at(n).PRN));
}
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking_ch_vec.back()->set_channel(gnss_synchro_vec.at(n).Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking_ch_vec.back()->set_gnss_synchro(&gnss_synchro_vec.at(n));
}) << "Failure setting gnss_synchro.";
}
top_block = gr::make_top_block("Telemetry_Decoder test");
boost::shared_ptr<HybridObservablesTest_msg_rx_Fpga> dummy_msg_rx_trk = HybridObservablesTest_msg_rx_Fpga_make();
boost::shared_ptr<HybridObservablesTest_tlm_msg_rx_Fpga> dummy_tlm_msg_rx = HybridObservablesTest_tlm_msg_rx_Fpga_make();
//Observables
std::shared_ptr<ObservablesInterface> observables(new HybridObservables(config.get(), "Observables", tracking_ch_vec.size() + 1, tracking_ch_vec.size()));
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
ASSERT_NO_THROW({
tracking_ch_vec.at(n)->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
}
std::string file;
const char* file_name;
ASSERT_NO_THROW({
//std::string file;
if (!FLAGS_enable_external_signal_file)
{
file = "./" + filename_raw_data;
}
else
{
file = FLAGS_signal_file;
}
//const char* file_name = file.c_str();
file_name = file.c_str();
//gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
//gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
int observable_interval_ms = 20;
//gnss_sdr_sample_counter_sptr samp_counter = gnss_sdr_make_sample_counter(static_cast<double>(baseband_sampling_freq), observable_interval_ms, sizeof(gr_complex));
//top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
//top_block->connect(gr_interleaved_char_to_complex, 0, samp_counter, 0);
double fs = static_cast<double>(config->property("GNSS-SDR.internal_fs_sps", 0));
gnss_sdr_fpga_sample_counter_sptr ch_out_fpga_sample_counter;
ch_out_fpga_sample_counter = gnss_sdr_make_fpga_sample_counter(fs, observable_interval_ms);
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
//top_block->connect(gr_interleaved_char_to_complex, 0, tracking_ch_vec.at(n)->get_left_block(), 0);
top_block->connect(tracking_ch_vec.at(n)->get_right_block(), 0, tlm_ch_vec.at(n)->get_left_block(), 0);
top_block->connect(tlm_ch_vec.at(n)->get_right_block(), 0, observables->get_left_block(), n);
top_block->msg_connect(tracking_ch_vec.at(n)->get_right_block(), pmt::mp("events"), dummy_msg_rx_trk, pmt::mp("events"));
top_block->connect(observables->get_right_block(), n, null_sink_vec.at(n), 0);
}
//connect sample counter and timmer to the last channel in observables block (extra channel)
//top_block->connect(samp_counter, 0, observables->get_left_block(), tracking_ch_vec.size());
top_block->connect(ch_out_fpga_sample_counter, 0, observables->get_left_block(), tracking_ch_vec.size()); //extra port for the sample counter pulse
//file_source->seek(2 * FLAGS_skip_samples, 0); //skip head. ibyte, two bytes per complex sample
}) << "Failure connecting the blocks.";
args.file = file;
//args.nsamples_tx = TEST_OBS_NSAMPLES_TRACKING; // number of samples to transfer
args.nsamples_tx = baseband_sampling_freq*FLAGS_duration;;
//if (test_observables_skip_samples_already_used == 1 && test_observables_doppler_control_in_sw == 1)
//{
// args.skip_used_samples = (gnss_synchro.PRN - 1)*fft_size;
//}
//else
//{
args.skip_used_samples = 0;
//}
//printf("2222222222222 CREATE PROCES\n");
//printf("%s\n", file.c_str());
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
tracking_ch_vec.at(n)->start_tracking();
}
//printf("222222222222222222 bis\n");
pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex_obs_test);
top_block->start();
//printf("33333333333333333333 top block started\n");
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
//top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block.";
// wait for the child DMA process to finish
pthread_join(thread_DMA, NULL);
//printf("444444444444 CHILD PROCESS FINISHED\n");
top_block->stop();
//printf("55555555555 TOP BLOCK STOPPED\n");
/*
// send more samples to unblock the tracking process in case it was waiting for samples
args.file = file;
//if (test_observables_skip_samples_already_used == 1 && test_observables_doppler_control_in_sw == 1)
//{
// skip the samples that have already been used
args.skip_used_samples = 0; //args.nsamples_tx;
//}
//else
//{
// args.skip_used_samples = 0;
//}
args.nsamples_tx = TEST_OBS_NSAMPLES_FINAL;
//printf("666666666 CREATE PROCESS TO SEND EXTRA SAMPLES\n");
if (pthread_create(&thread_DMA, NULL, handler_DMA_obs_test, (void *)&args) < 0)
{
printf("ERROR cannot create DMA Process\n");
}
pthread_join(thread_DMA, NULL);
//printf("777777777 PROCESS FINISHED \n");
*/
// reset the HW AGAIN
acquisition->stop_acquisition();
// pthread_mutex_lock(&mutex_obs_test);
// send_samples_start_obs_test = 0;
// pthread_mutex_unlock(&mutex_obs_test);
//check results
// Matrices for storing columnwise true GPS time, Range, Doppler and Carrier phase
std::vector<arma::mat> true_obs_vec;
if (!FLAGS_enable_external_signal_file)
{
//load the true values
True_Observables_Reader true_observables;
ASSERT_NO_THROW({
if (true_observables.open_obs_file(std::string("./obs_out.bin")) == false)
{
throw std::exception();
}
}) << "Failure opening true observables file";
unsigned int nepoch = static_cast<unsigned int>(true_observables.num_epochs());
std::cout << "True observation epochs = " << nepoch << std::endl;
true_observables.restart();
int64_t epoch_counter = 0;
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
true_obs_vec.push_back(arma::zeros<arma::mat>(nepoch, 4));
}
ASSERT_NO_THROW({
while (true_observables.read_binary_obs())
{
for (unsigned int n = 0; n < true_obs_vec.size(); n++)
{
if (round(true_observables.prn[n]) != gnss_synchro_vec.at(n).PRN)
{
std::cout << "True observables SV PRN does not match measured ones: "
<< round(true_observables.prn[n]) << " vs. " << gnss_synchro_vec.at(n).PRN << std::endl;
throw std::exception();
}
true_obs_vec.at(n)(epoch_counter, 0) = true_observables.gps_time_sec[n];
true_obs_vec.at(n)(epoch_counter, 1) = true_observables.dist_m[n];
true_obs_vec.at(n)(epoch_counter, 2) = true_observables.doppler_l1_hz[n];
true_obs_vec.at(n)(epoch_counter, 3) = true_observables.acc_carrier_phase_l1_cycles[n];
}
epoch_counter++;
}
});
}
else
{
ASSERT_EQ(ReadRinexObs(&true_obs_vec, gnss_synchro_master), true)
<< "Failure reading RINEX file";
}
//read measured values
Observables_Dump_Reader estimated_observables(tracking_ch_vec.size());
ASSERT_NO_THROW({
if (estimated_observables.open_obs_file(std::string("./observables.dat")) == false)
{
throw std::exception();
}
}) << "Failure opening dump observables file";
unsigned int nepoch = static_cast<unsigned int>(estimated_observables.num_epochs());
std::cout << "Measured observations epochs = " << nepoch << std::endl;
// Matrices for storing columnwise measured RX_time, TOW, Doppler, Carrier phase and Pseudorange
std::vector<arma::mat> measured_obs_vec;
std::vector<int64_t> epoch_counters_vec;
for (unsigned int n = 0; n < tracking_ch_vec.size(); n++)
{
measured_obs_vec.push_back(arma::zeros<arma::mat>(nepoch, 5));
epoch_counters_vec.push_back(0);
}
estimated_observables.restart();
//printf("Observables : ............................\n");
while (estimated_observables.read_binary_obs())
{
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
if (static_cast<bool>(estimated_observables.valid[n]))
{
//printf("estimated_observables.RX_time[%d] = %d\n", n, estimated_observables.RX_time[n]);
//printf("estimated_observables.TOW_at_current_symbol_s[%d] = %d\n", n, estimated_observables.TOW_at_current_symbol_s[n]);
//printf("estimated_observables.Carrier_Doppler_hz[%d] = %d\n", n, estimated_observables.Carrier_Doppler_hz[n]);
//printf("estimated_observables.Acc_carrier_phase_hz[%d] = %d\n", n, estimated_observables.Acc_carrier_phase_hz[n]);
//printf("estimated_observables.Pseudorange_m[%d] = %d\n", n, estimated_observables.Pseudorange_m[n]);
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 0) = estimated_observables.RX_time[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 1) = estimated_observables.TOW_at_current_symbol_s[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 2) = estimated_observables.Carrier_Doppler_hz[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 3) = estimated_observables.Acc_carrier_phase_hz[n];
measured_obs_vec.at(n)(epoch_counters_vec.at(n), 4) = estimated_observables.Pseudorange_m[n];
epoch_counters_vec.at(n)++;
}
}
}
//Cut measurement tail zeros
arma::uvec index;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
index = arma::find(measured_obs_vec.at(n).col(0) > 0.0, 1, "last");
if ((index.size() > 0) and index(0) < (nepoch - 1))
{
measured_obs_vec.at(n).shed_rows(index(0) + 1, nepoch - 1);
}
}
//Cut measurement initial transitory of the measurements
double initial_transitory_s = FLAGS_skip_obs_transitory_s;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
index = arma::find(measured_obs_vec.at(n).col(0) >= (measured_obs_vec.at(n)(0, 0) + initial_transitory_s), 1, "first");
if ((index.size() > 0) and (index(0) > 0))
{
measured_obs_vec.at(n).shed_rows(0, index(0));
}
index = arma::find(measured_obs_vec.at(n).col(0) >= true_obs_vec.at(n)(0, 0), 1, "first");
if ((index.size() > 0) and (index(0) > 0))
{
measured_obs_vec.at(n).shed_rows(0, index(0));
}
}
//Correct the clock error using true values (it is not possible for a receiver to correct
//the receiver clock offset error at the observables level because it is required the
//decoding of the ephemeris data and solve the PVT equations)
//Find the reference satellite (the nearest) and compute the receiver time offset at observable level
double min_pr = std::numeric_limits<double>::max();
unsigned int min_pr_ch_id = 0;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
if (epoch_counters_vec.at(n) > 10) //discard non-valid channels
{
{
if (measured_obs_vec.at(n)(0, 4) < min_pr)
{
min_pr = measured_obs_vec.at(n)(0, 4);
min_pr_ch_id = n;
}
}
}
else
{
std::cout << "PRN " << gnss_synchro_vec.at(n).PRN << " has NO observations!\n";
}
}
arma::vec receiver_time_offset_ref_channel_s;
//receiver_time_offset_ref_channel_s = true_obs_vec.at(min_pr_ch_id).col(1) / GPS_C_m_s - GPS_STARTOFFSET_ms / 1000.0;
receiver_time_offset_ref_channel_s = (true_obs_vec.at(min_pr_ch_id).col(1)(0) - measured_obs_vec.at(min_pr_ch_id).col(4)(0)) / GPS_C_M_S;
std::cout << "Ref channel initial Receiver time offset " << receiver_time_offset_ref_channel_s(0) * 1e3 << " [ms]" << std::endl;
for (unsigned int n = 0; n < measured_obs_vec.size(); n++)
{
//debug save to .mat
std::vector<double> tmp_vector_x(true_obs_vec.at(n).col(0).colptr(0),
true_obs_vec.at(n).col(0).colptr(0) + true_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y(true_obs_vec.at(n).col(1).colptr(0),
true_obs_vec.at(n).col(1).colptr(0) + true_obs_vec.at(n).col(1).n_rows);
save_mat_xy(tmp_vector_x, tmp_vector_y, std::string("true_pr_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x2(measured_obs_vec.at(n).col(0).colptr(0),
measured_obs_vec.at(n).col(0).colptr(0) + measured_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y2(measured_obs_vec.at(n).col(4).colptr(0),
measured_obs_vec.at(n).col(4).colptr(0) + measured_obs_vec.at(n).col(4).n_rows);
save_mat_xy(tmp_vector_x2, tmp_vector_y2, std::string("measured_pr_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x3(true_obs_vec.at(n).col(0).colptr(0),
true_obs_vec.at(n).col(0).colptr(0) + true_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y3(true_obs_vec.at(n).col(2).colptr(0),
true_obs_vec.at(n).col(2).colptr(0) + true_obs_vec.at(n).col(2).n_rows);
save_mat_xy(tmp_vector_x3, tmp_vector_y3, std::string("true_doppler_ch_" + std::to_string(n)));
std::vector<double> tmp_vector_x4(measured_obs_vec.at(n).col(0).colptr(0),
measured_obs_vec.at(n).col(0).colptr(0) + measured_obs_vec.at(n).col(0).n_rows);
std::vector<double> tmp_vector_y4(measured_obs_vec.at(n).col(2).colptr(0),
measured_obs_vec.at(n).col(2).colptr(0) + measured_obs_vec.at(n).col(2).n_rows);
save_mat_xy(tmp_vector_x4, tmp_vector_y4, std::string("measured_doppler_ch_" + std::to_string(n)));
if (epoch_counters_vec.at(n) > 10) //discard non-valid channels
{
arma::vec true_TOW_ref_ch_s = true_obs_vec.at(min_pr_ch_id).col(0) - receiver_time_offset_ref_channel_s(0);
arma::vec true_TOW_ch_s = true_obs_vec.at(n).col(0) - receiver_time_offset_ref_channel_s(0);
//Compare measured observables
if (min_pr_ch_id != n)
{
check_results_code_pseudorange(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_phase_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler_double_diff(true_obs_vec.at(n),
true_obs_vec.at(min_pr_ch_id),
true_TOW_ch_s,
true_TOW_ref_ch_s,
measured_obs_vec.at(n),
measured_obs_vec.at(min_pr_ch_id),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
}
else
{
std::cout << "[CH " << std::to_string(n) << "] PRN " << std::to_string(gnss_synchro_vec.at(n).PRN) << " is the reference satellite" << std::endl;
}
if (FLAGS_compute_single_diffs)
{
check_results_carrier_phase(true_obs_vec.at(n),
true_TOW_ch_s,
measured_obs_vec.at(n),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
check_results_carrier_doppler(true_obs_vec.at(n),
true_TOW_ch_s,
measured_obs_vec.at(n),
"[CH " + std::to_string(n) + "] PRN " + std::to_string(gnss_synchro_vec.at(n).PRN) + " ");
}
}
else
{
std::cout << "PRN " << gnss_synchro_vec.at(n).PRN << " has NO observations!\n";
}
}
std::cout << "Test completed in " << elapsed_seconds.count() << " [s]" << std::endl;
}