We'll do this everywhere eventually, but much easier to do it
incrementally:
- Use checker framework to default all field/methods/parameters to
@Nonnull.
- Start using ErrorProne[1] and NullAway[2] to check for possible null
pointer issues. I did look into using CheckerFramework, but it's much
stricter (i.e. it's actually Correct). This is technically good, but
is a much steeper migration path, which I'm not sure we're prepared
for yet!
[1]: https://github.com/google/error-prone
[2]: https://github.com/uber/NullAway
It should be possible to consume the ComputerCraft's core (i.e.
non-Minecraft code) in other projects, such as emulators. While this
has been possible for years, it's somewhat tricky from a maintenance
perspective - it's very easy to accidentally add an MC dependency
somewhere!
By publishing a separate "core" jar, we can better distinguish the
boundaries between our Lua runtime and the Minecraft-specific code.
Ideally we could have one core project (rather than separate core and
core-api modules), and publish a separate "api" jar, like we do for the
main mod. However, this isn't really possible to express using Maven
dependencies, and so we must resort to this system.
Of course, this is kinda what the Java module system is meant to solve,
but unfortunately getting that working with Minecraft is infeasible.
- Move core-specific config options to a separate CoreConfig class.
- Use class-specific loggers, instead of a global one.
- Use log markers instead of a logComputerErrors option.
- Switch to a fairly standard code format. This is largely based on
IntelliJ defaults, with some minor tweaks applied via editor config.
Should mean people don't need to import a config!
- Use "var" everywhere instead of explicit types. Type inference is a
joy, and I intend to use it to its fullest.
- Start using switch expressions: we couldn't use them before because
IntelliJ does silly things with our previous brace style, but now we
have the luxury of them!
- Switch to using OptionalInt/OptionalLong instead of @Nullable
Long/Integers. I know IntelliJ complains, but it avoids the risk of
implicit unboxing.
- Instead of mutating PartialOptions, we now define a merge() function
which returns the new options. This simplifies the logic in
AddressRule a whole bunch.
This is a noisier diff than I'd like as this is just a direct copy from
the multi-loader branch.
- Rename "ingame" package to "gametest"
- Don't chain GameTestSequence methods - it's actually much cleaner if
we just use Kotlin's implicit this syntax.
- Use our work in 71f81e1201 to write
computer tests using Kotlin instead of Lua. This means all the logic
is in one place, which is nice!
- Add a couple more tests for some of the more error-prone bits of
functionality.
This is an initial step before refactoring this into a separate module.
It's definitely not complete - there's a lot of work needed to remove
referneces to the main ComputerCraft class for instance - but is a
useful first step.
I still don't really understand why the ROOT locale is wrong here, but
there we go. We'll need to remember to uncomment the tests on the 1.18
branch!
Also add some code to map tests back to their definition side. Alas,
this only links to the file right now, not the correct line :/.
This offers very few advantages now, but helps support the following in
the future:
- Reuse test support code across multiple projects (useful for
multi-loader).
- Allow using test fixture code in testMod. We've got a version of our
gametest which use Kotlin instead of Lua for asserting computer
behaviour.
We can't use java-test-fixtures here for Forge reasons, so have to roll
our own version. Alas.
- Add an ILuaMachine implementation which runs Kotlin coroutines
instead. We can use this for testing asynchronous APIs. This also
replaces the FakeComputerManager.
- Move most things in the .support module to .test.core. We need to use
a separate package in order to cope with Java 9 modules (again,
thanks Forge).
This allows other mods to create wired-modem alike blocks, which expose
peripherals on the wired network, without having to reimplement the main
modem interface.
This is not currently documented, but a peripheral_hub should provide
the following methods:
- isPresentRemote
- getTypeRemote
- hasTypeRemote
- getMethodsRemote
- callRemote
- Add a new file_transfer event. This has the signature
"file_transfer", TransferredFiles.
TransferredFiles has a single method getFiles(), which returns a list
of all transferred files.
- Add a new "import" program which waits for a file_transfer event and
writes files to the current directory.
- If a file_transfer event is not handled (i.e. its getFiles() method
is not called) within 5 seconds on the client, we display a toast
informing the user on how to upload a file.
- Use <p> everywhere. This is uglier, but also technically more
correct. This requires a version bump to cct-javadoc, and will give
me a massive headache when merging.
- Link against the existing OpenJDK docs.
We now wait for workers to terminate when closing the computer thread.
I'll be honest, I'm not happy with this code. Multi-threading is really
hard to get right, and I can't say I'm convinced this is especially well
behaved. I did look at trying to model this in TLA+, but in the end
decided it wasn't worth it.
In the future we probably want to split ComputerExecutor into two
objects, where one is our entry in the ComputerThread queue (and so
holds timing information) while the other is responsible for actual
execution.
- Correctly handle Git commands failing. We need an actual default
value, not just null!
- Use run/ and build/tmp/ for temporary test locations, not
/test-files.
- Switch over to the Gradle GH action. Not expecting massive changes,
but might provide some better caching.
- Bump some GH action versions.
- Fix a Java 8 compatability issue in our build scripts.