Everything old is new again!
CC's network message implementation has gone through several iterations:
- Originally network messages were implemented with a single class,
which held an packet id/type and and opaque blobs of data (as
string/int/byte/NBT arrays), and a big switch statement to decode and
process this data.
- In 42d3901ee3, we split the messages
into different classes all inheriting from NetworkMessage - this bit
we've stuck with ever since.
Each packet had a `getId(): int` method, which returned the
discriminator for this packet.
- However, getId() was only used when registering the packet, not when
sending, and so in ce0685c31f we
removed it, just passing in a constant integer at registration
instead.
- In 53abe5e56e, we made some relatively
minor changes to make the code more multi-loader/split-source
friendly. However, this meant when we finally came to add Fabric
support (8152f19b6e), we had to
re-implement a lot of Forge's network code.
In 1.20.4, Forge moves to a system much closer to Fabric's (and indeed,
Minecraft's own CustomPacketPayload), and so it makes sense to adapt to
that now. As such, we:
- Add a new MessageType interface. This is implemented by the
loader-specific modules, and holds whatever information is needed to
register the packet (e.g. discriminator, reader function).
- Each NetworkMessage now has a type(): MessageType<?> function. This
is used by the Fabric networking code (and for NeoForge's on 1.20.4)
instead of a class lookup.
- NetworkMessages now creates/stores these MessageType<T>s (much like
we'd do for registries), and provides getters for the
clientbound/serverbound messages. Mod initialisers then call these
getters to register packets.
- For Forge, this is relatively unchanged. For Fabric, we now
`FabricPacket`s.
While ComputerFamily is still useful, there's definitely some places
where it adds an extra layer of indirection. This commit attempts to
clean up some places where we no longer need it.
- Remove ComputerFamily from AbstractComputerBlock. The only place this
was needed is in TurtleBlock, and that can be replaced with normal
Minecraft explosion resistence!
- Pass in the fuel limit to the turtle block entity, rather than
deriving it from current family.
- The turtle BERs now derive their model from the turtle's item, rather
than the turtle's family.
- When creating upgrade/overlay recipes, use the item's name, rather
than {pocket,turtle}_family. This means we can drop getFamily() from
IComputerItem (it is still needed on to handle the UI).
- We replace IComputerItem.withFamily with a method to change to a
different item of the same type. ComputerUpgradeRecipe no longer
takes a family, and instead just uses the result's item.
- Computer blocks now use the normal Block.asItem() to find their
corresponding item, rather than looking it up via family.
The above means we can remove all the family-based XyzItem.create(...)
methods, which have always felt a little ugly.
We still need ComputerFamily for a couple of things:
- Permission checks for command computers.
- Checks for mouse/colour support in ServerComputer.
- UI textures.
This commit adds abstract classes to describe the interface for our
mod-loader-specific generic peripherals (inventories, fluid storage,
item storage).
This offers several advantages:
- Javadoc to illuaminate conversion no longer needs the Forge project
(just core and common).
- Ensures we have a consistent interface between Forge and Fabric.
Note, this does /not/ implement fluid or energy storage for Fabric. We
probably could do fluid without issue, but not something worth doing
right now.
This adds a new "java_allocation" metric, which tracks the number of
bytes allocated while executing the computer (as measured by Java). This
is not an 100% reliable number, but hopefully gives some insight into
what computers are doing.
In practice, we're never going to change this to true by default. The
old Tekkit Legends pack enabled this[^1], and that caused a lot of
problems, though admittedly back in 2016 so things might be better now.
If people do want this functionality, it should be fairly easy to
replicate with a datapack, adding a file to rom/autorun.
[^1]: See https://www.computercraft.info/forums2/index.php?/topic/27663-
Hate that I remember this, why is this still in my brain?
Allows registering arbitrary block lookup functions instead of a
platform-specific capability. This is roughly what Fabric did before,
but generalised to also take an invalidation callback.
This callback is a little nasty - it needs to be a NonNullableConsumer
on Forge, but that class isn't available on Fabric. For now, we make the
lookup function (and thus the generic peripheral provider) generic on
some <T extends Runnable> type, then specialise that on the Forge side.
Hopefully we can clean this up when NeoForge reworks capabilities.
This attempts to reduce some duplication in recipe serialisation (and
deserialisation) by moving the structure of a recipe (group, category,
ingredients, result) into seprate types.
- Add ShapedRecipeSpec and ShapelessRecipeSpec, which store the core
properties of shaped and shapeless recipes. There's a couple of
additional classes here for handling some of the other shared or
complex logic.
- These classes are now used by two new Custom{Shaped,Shapeless}Recipe
classes, which are (mostly) equivalent to Minecraft's
shaped/shapeless recipes, just with support for nbt in results.
- All the other similar recipes now inherit from these base classes,
which allows us to reuse a lot of this serialisation code. Alas, the
total code size has still gone up - maybe there's too much
abstraction here :).
- Mostly unrelated, but fix the skull recipes using the wrong UUID
format.
This allows us to remove our mixin for nbt in recipes (as we just use
our custom recipe now) and simplify serialisation a bit - hopefully
making the switch to codecs a little easier.
Rather than having a mess of lambdas, we now move the bulk of the
implemetation to their own methods. The lambdas now just do argument
extraction - it's all stringly typed, so good to keep that with the
argument definition.
This also removes a couple of exception keys (and thus their translation
keys) as we no longer use them.
I removed this in aa0d544bba, way back in
late 2021. Looks like it's been updating in the meantime and I hadn't
noticed, so add it back.
I've simplified the code a little bit, to make use of our new capability
helpers, but otherwise it's almost exactly the same :D.
- Split buttons.png into individual textures.
- Split corners_xyz.png into the following:
- borders_xyz.png: A nine-sliced texture of the computer borders.
- pocket_bottom_xyz.png: A horizontally 3-sliced texture of the
bottom part of a pocket computer.
- sidebar_xyz.png: A vertically 3-sliced texture of the computer
sidebar.
While not splitting the sliced textures into smaller ones may seem a
little odd, it's consistent with what vanilla does in 1.20.2, and I
think will make editing them easier than juggling 9 textures.
I do want to make this more data-driven in the future, but that will
have to wait until the changes in 1.20.2.
This also adds a tools/update-resources.py program, which performs this
transformation on a given resource pack.
- Add a generic PermissionRegistry interface. This behaves similarly to
our ShaderMod interface, searching all providers until it finds a
compatible one.
We could just make this part of the platform code instead, but this
allows us to support multiple systems on Fabric, where things are
less standardised.
This interface behaves like a registry, rather than a straight
`getPermission(node, player)` method, as Forge requires us to list
our nodes up-front.
- Add Forge (using the built-in system) and Fabric (using
fabric-permissions-api) implementations of the above interface.
- Register permission nodes for our commands, and use those
instead. This does mean that the permissions check for the root
/computercraft command now requires enumerating all child
commands (and so potential does 7 permission lookups), but hopefully
this isn't too bad in practice.
- Remove UserLevel.OWNER - we never used this anywhere, and I can't
imagine we'll want to in the future.
- Remove some unused translation keys.
- Run tools/language.py to sort the current translations and remove the
aforementioned unused keys.
- Update turtle tool impostor recipes - these now include the tool NBT!
- Overhaul model loading to work with the new API. This allows for
using the emissive texture system in a more generic way, which is
nice!
- Convert some of our custom models to use Fabric's model hooks (i.e.
emitItemQuads). We don't make use of this right now, but might be
useful for rendering tools with enchantment glints.
Note this does /not/ change any of the turtle block entity rendering
code to use Fabric/Forge's model code. This will be a change we want
to make in the future.
- Some cleanup of our config API. This fixes us printing lots of
warnings when creating a new config file on Fabric (same bug also
occurs on Forge, but that's a loader problem).
- Fix a few warnings
We've supported resource conditions in the upgrade JSON for an age, but
don't expose it in our data generators at all.
Indeed, using these hooks is a bit of a pain to do in multi-loader
setups, as the JSON is different between the two loaders. We could
generate the JSON for all loaders at once, but it feels nicer to use
the per-loader APIs to add the conditions.
For now, we just support generating a single condition - whether a mod
is loaded not, via the requireMod(...) method.
We switched to Forge's loot modifier system in the 1.20 update, as
LootTable.addPool had been removed. Turns out this was by accident, and
so we switch back to the previous implementation, as it's much simpler
and efficient.
Turtle tools now accept two additional JSON fields
- allowEnchantments: Whether items with enchantments (or any
non-standard NBT) can be equipped.
- consumesDurability: Whether durability will be consumed. This can be
"never" (the current and default behaviour), "always", and
"when_enchanted".
Closes#1501.
This removes a tiny bit of duplication (at the cost of mode code), but
makes the interface more intuitive, as there's no bouncing between
getCombination -> cache -> buildModel.
It turns out we don't document the "port" option anywhere, so probably
worth doing a bit of an overhaul here.
- Expand the top-level HTTP rules comment, clarifying how things are
matched and describing each field.
- Improve the comments on the default HTTP rule. We now also describe
the $private rule and its motivation.
- Don't drop/ignore invalid rules. This gets written back to the
original config file, so is very annoying! Instead we now log an
error and convert the rule into a "deny all" rule, which should make
it obvious something is wrong.
- Move several interfaces out of `d00.computercraft.core.asm` into a
new `aethods` package. It may make sense to expose this to the
public API in a future commit (possibly part of #1462).
- Add a new MethodSupplier<T> interface, which provides methods to
iterate over all methods exported by an object (either directly, or
including those from ObjectSources).
This interface's concrete implementation (asm.MethodSupplierImpl),
uses Generators and IntCaches as before - we can now make that all
package-private though, which is nice!
- Make the LuaMethod and PeripheralMethod MethodSupplier local to the
ComputerContext. This currently has no effect (the underlying
Generator is still global), but eventually we'll make GenericMethods
non-global, which unlocks the door for #1382.
- Update everything to use this new interface. This is mostly pretty
sensible, but is a little uglier on the MC side (especially in
generic peripherals), as we need to access the global ServerContext.
- Remove SidedGenericPeripheral (we never used this!), adding the
functionality to GenericPeripheral directly. This is just used on the
Fabric side for now, but might make sense with Forge too.
- Move GenericPeripheralBuilder into the common project - this is
identical between the two projects!
- GenericPeripheralBuilder now generates a list of methods internally,
rather than being passed the methods.
- Add a tiny bit of documentation.
When a turtle attempts to place a block, it does so by searching for
nearby blocks and attempting to place the item against that block.
This has slightly strange behaviour when working with "placable"
non-block items though (such as buckets or boats). In this case, we call
Item.use, which doesn't take in the position of the block we're placing
against. Instead these items do their own ray trace, using the default
reach distance.
If the block we're trying to place against is non-solid, the ray trace
will go straight through it and continue (up to the maximum of 5
blocks), allowing placing the item much further away.
Our fix here is to override the default reach distance of our fake
players, limiting it to 2. This is easy on Forge (it has built-in
support), and requires a mixin on Fabric.
Closes#1497.
- Reverse quads in our model transformer and when rendering as a block
entity.
- Correctly recompute normals when the quads have been inverted.
Closes#1283
- Split the front face of the computer model into two layers - one for
the main texture, and one for the cursor. This is actually a
simplification of what we had before, which is nice.
- Make the cursor layer render as an emissive quad, meaning it glows in
the dark. This is very easy on Forge (just some model JSON) and very
hard on Fabric (requires a custom model loader).
This adds two slots to the right of the turtle interface which contain
the left and right upgrades of a turtle.
- Add turtle_upgrade_{left,right} indicators, which used as the
background texture for the two upgrade slots. In order to use
Slot.getNoItemIcon, we need to bake these into the block texture
atlas.
This is done with the new atlas JSON and a data generator - it's
mostly pretty simple, but we do now need a client-side data
generator, which is a little ugly to do.
- Add a new UpgradeContainer/UpgradeSlot, which exposes a turtle's
upgrades in an inventory-like way.
- Update the turtle menu and screen to handle these new slots.
Since 1.19.3, this was only populated when the player opened the
creative menu, and so was useless in survival or multi-player
worlds.
Rather than removing the field entirely (🦑 backwards compatibility), we
replace it with the empty list. We also remove it from the docs, and add
a note explaining what the field used to do.
Closes#1285, albeit in the least satisfactory way possible.
- Use GuiGraphics for rendering UI elements. Almost definitely some
z-fighting issues slipped in here.
- Use Forge's loot modifier system for handling treasure disks. I have
mixed feelings about this - it's a nice system, but also is far less
efficient than the previous approach.
- Regenerate data. This is the brunt of the commit, but nothing
especially interesting here.
Instead of creating the upgrade serialiser registries in mod
initialisation, we now do it when the API is created. This ensures the
registries are available for other mods, irrespective of mod load order.
This feels a little sad (we're doing side effects in the static
initialiser), but is /fine/ - it's pretty much what other mods do.