The simplest, fastest repository for training/finetuning medium-sized GPTs. It's a re-write of [minGPT](https://github.com/karpathy/minGPT), which I think became too complicated, and which I am hesitant to now touch. Still under active development, currently working to reproduce GPT-2 on OpenWebText dataset. The code itself aims by design to be plain and readable: `train.py` is a ~300-line boilerplate training loop and `model.py` a ~300-line GPT model definition, which can optionally load the GPT-2 weights from OpenAI. That's it.
To download and tokenize the [OpenWebText](https://huggingface.co/datasets/openwebtext) dataset. This will create a `train.bin` and `val.bin` which holds the GPT2 BPE token ids in one sequence, stored as raw uint16 bytes. Then we're ready to kick off training. The training script currently by default tries to reproduce the smallest GPT-2 released by OpenAI, i.e. the 124M version of GPT-2. We can demo train as follows on a single device, though I encourage you to read the code and see all of the settings and paths up top in the file:
To my knowledge, running this with the current script with the GPT-2 hyperparameters should reproduce the GPT-2 result, provided that OpenWebText ~= WebText. I'd like to make the code more efficient before attempting to go there. Once some checkpoints are written to the output directory (e.g. `./out` by default), we can sample from the model:
Training on 1 A100 40GB GPU overnight currently gets loss ~3.74, training on 4 gets ~3.60. Training on an 8 x A100 40GB node for 400,000 iters (~1 day) atm gets down to 3.1. Random chance at init is -ln(1/50257) = 10.82. Which brings us to baselines.
OpenAI GPT-2 checkpoints allow us to get some baselines in place for openwebtext. We can get the numbers as follows:
```
$ python train.py eval_gpt2
$ python train.py eval_gpt2_medium
$ python train.py eval_gpt2_large
$ python train.py eval_gpt2_xl
```
and observe the following losses on train and val:
| model | params | train loss | val loss |
| ------| ------ | ---------- | -------- |
| gpt2 | 124M | 3.11 | 3.12 |
| gpt2-medium | 350M | 2.85 | 2.84 |
| gpt2-large | 774M | 2.66 | 2.67 |
| gpt2-xl | 1558M | 2.56 | 2.54 |
I briefly tried finetuning gpt2 a bit more on our OWT and didn't notice dramatic improvements, suggesting that OWT is not much much different from WT in terms of the data distribution, but this needs a bit more thorough attempt once the code is in a better place.
For an example of how to finetune a GPT on new text go to `data/shakespeare` and look at `prepare.py` to download the tiny shakespeare dataset and render it into a `train.bin` and `val.bin`. Unlike OpenWebText this will run in seconds. Finetuning takes very little time, e.g. on a single GPU just a few minutes. Run an example finetuning like:
```
$ python train.py finetune_shakespeare
```
This will load the config parameter overrides in `config/finetune_shakespeare.py` (I didn't tune them much though). Basically, we initialize from a GPT2 checkpoint with `init_from` and train as normal, except shorter and with a small learning rate. The best checkpoint (lowest validation loss) will be in the `out_dir` directory, e.g. in `out-shakespeare` by default, per the config file. You can then run the code in `sample.py` to generate infinite Shakespeare. Note that you'll have to edit it to point to the correct `out_dir`.
For model benchmarking `bench.py` might be useful. It's identical what happens in the meat of the training loop of `train.py`, but omits much of the other complexities.
Code by default now uses [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/). At the time of writing (Dec 29, 2022) this makes `torch.compile()` available in the nightly release. The improvement from the one line of code is noticeable, e.g. cutting down iteration time from ~250ms / iter to 135ms / iter. Nice work PyTorch team!
- Current initialization (PyTorch default) departs from GPT-2. In a very quick experiment I found it to be superior to the one suggested in the papers, but that can't be right?
- I don't currently seem to need gradient clipping but it is very often used (?). Nothing is exploding so far at these scales but maybe I'm laeving performance on the table. Evaluate with/without.
- I am still not 100% confident that my GPT-2 small reproduction hyperparameters are good, if someone has reproduced GPT-2 I'd be eager to exchange notes ty
- Actually reproduce GPT-2 results and have clean configs that reproduce the result. It was estimated ~3 years ago that the training cost of 1.5B model was ~$50K (?). Sounds a bit too high.