mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 06:00:29 +00:00
add support for DDP training. the scaling timings right now do not look good by default, have to dig more into
This commit is contained in:
parent
ee6459f1d0
commit
dea1507252
26
README.md
26
README.md
@ -1,34 +1,40 @@
|
||||
|
||||
# nanoGPT
|
||||
|
||||
The cleanest, fastest repository for training/finetuning medium-sized GPTs. Still under active development, currently trying to reproduce GPT-2 on OpenWebText dataset. The code itself is tiny, plain and readable. At the moment `train.py` is a ~200-line boilerplate training loop and `model.py` a ~300-line GPT model definition, which can also load the GPT-2 weights from OpenAI.
|
||||
The cleanest, smallest, fastest repository for training/finetuning medium-sized GPTs. Still under active development, currently working to reproduce GPT-2 on OpenWebText dataset. The code itself aims by design to be plain and readable: `train.py` is a ~300-line boilerplate training loop and `model.py` a ~300-line GPT model definition, which can optionally load the GPT-2 weights from OpenAI. That's it.
|
||||
|
||||
## install
|
||||
|
||||
We need a few dependencies:
|
||||
Dependencies:
|
||||
|
||||
- [pytorch](https://pytorch.org), of course
|
||||
- numpy
|
||||
- `pip install datasets` for huggingface datasets
|
||||
- `pip install tiktoken` for OpenAI's fast bpe code
|
||||
- `pip install wandb` for optional logging
|
||||
- [pytorch](https://pytorch.org) <3
|
||||
- numpy <3
|
||||
- `pip install datasets` for huggingface datasets <3
|
||||
- `pip install tiktoken` for OpenAI's fast bpe code <3
|
||||
- `pip install wandb` for optional logging <3
|
||||
|
||||
## usage
|
||||
|
||||
To render a dataset we first tokenize some documents into one giant array of indices. E.g. for OpenWebText see:
|
||||
To render a dataset we first tokenize some documents into one simple long 1D array of indices. E.g. for OpenWebText see:
|
||||
|
||||
```
|
||||
$ cd data/openwebtext
|
||||
$ python prepare.py
|
||||
```
|
||||
|
||||
To download and tokenize the [OpenWebText](https://huggingface.co/datasets/openwebtext) dataset. It will create a `train.bin` and `val.bin` which holds the GPT2 BPE token ids in one sequence, stored as raw uint16 bytes. Then we're ready to kick off training. The training script currently by default tries to reproduce the smallest GPT-2 released by OpenAI, i.e. the 124M version of GPT-2. We can train as follows, though I encourage you to read the code and see all of the settings and paths up top in the file:
|
||||
To download and tokenize the [OpenWebText](https://huggingface.co/datasets/openwebtext) dataset. This will create a `train.bin` and `val.bin` which holds the GPT2 BPE token ids in one sequence, stored as raw uint16 bytes. Then we're ready to kick off training. The training script currently by default tries to reproduce the smallest GPT-2 released by OpenAI, i.e. the 124M version of GPT-2. We can demo train as follows on a single device, though I encourage you to read the code and see all of the settings and paths up top in the file:
|
||||
|
||||
```
|
||||
$ python train.py
|
||||
```
|
||||
|
||||
Once some checkpoints are written to the output directory `out`, we can sample from the model:
|
||||
To train using PyTorch Distributed Data Parallel (DDP) run the script with torchrun. For example to train on a node with 4 GPUs run:
|
||||
|
||||
```
|
||||
$ torchrun --standalone --nproc_per_node=4 train.py
|
||||
```
|
||||
|
||||
Once some checkpoints are written to the output directory (e.g. `./out` by default), we can sample from the model:
|
||||
|
||||
```
|
||||
$ python sample.py
|
||||
|
79
train.py
79
train.py
@ -1,6 +1,12 @@
|
||||
"""
|
||||
Train a GPT model on a dataset of text. One GPU version.
|
||||
The text is assumed to pre-tokenized and inside files train.pt and val.pt
|
||||
This training script can be run both on a single gpu in debug mode,
|
||||
and also in a larger training run with distributed data parallel (ddp).
|
||||
|
||||
To run in debug mode example:
|
||||
$ python train.py --batch_size=32 --other=args
|
||||
|
||||
To run DDP on 4 gpus on one node, example:
|
||||
$ torchrun --standalone --nproc_per_node=4 train.py
|
||||
"""
|
||||
|
||||
import os
|
||||
@ -9,9 +15,11 @@ import time
|
||||
import math
|
||||
from ast import literal_eval
|
||||
|
||||
import wandb
|
||||
import numpy as np
|
||||
import torch
|
||||
import wandb
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.distributed import init_process_group, destroy_process_group
|
||||
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
@ -49,9 +57,11 @@ decay_lr = True # whether to decay the learning rate
|
||||
warmup_iters = 2000 # how many steps to warm up for
|
||||
lr_decay_iters = 320000 # how many steps to decay the learning rate for
|
||||
min_lr = 1e-5 # minimum learning rate
|
||||
# DDP settings
|
||||
backend = 'nccl' # 'nccl', 'gloo', etc.
|
||||
# -----------------------------------------------------------------------------
|
||||
# poor man's Configurator. Potentially a bad idea. Example usage:
|
||||
# python train.py override_file --batch_size=32
|
||||
# $ python train.py override_file --batch_size=32
|
||||
# this will first run config/override_file.py, then override batch_size to 32
|
||||
for arg in sys.argv[1:]:
|
||||
if '=' not in arg:
|
||||
@ -71,7 +81,7 @@ for arg in sys.argv[1:]:
|
||||
try:
|
||||
# attempt to eval it it (e.g. if bool, number, or etc)
|
||||
attempt = literal_eval(val)
|
||||
except SyntaxError:
|
||||
except (SyntaxError, ValueError):
|
||||
# if that goes wrong, just use the string
|
||||
attempt = val
|
||||
# ensure the types match ok
|
||||
@ -82,13 +92,21 @@ for arg in sys.argv[1:]:
|
||||
else:
|
||||
raise ValueError(f"Unknown config key: {key}")
|
||||
# -----------------------------------------------------------------------------
|
||||
ddp = int(os.environ.get('LOCAL_RANK', -1)) != -1 # is this a ddp run?
|
||||
if ddp:
|
||||
init_process_group(backend=backend)
|
||||
gpu_id = int(os.environ["LOCAL_RANK"])
|
||||
device = f"cuda:{gpu_id}"
|
||||
else:
|
||||
gpu_id = 0 # gpu_id 0 means this is the (single) master process, basically
|
||||
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
torch.manual_seed(1337)
|
||||
if gpu_id == 0:
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
torch.manual_seed(1337 + gpu_id) # note: each worker gets a different seed
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
|
||||
# poor man's data loader, TODO use real DataLoader...
|
||||
# poor man's data loader, TODO evaluate need for actual DataLoader
|
||||
data_dir = os.path.join('data', dataset)
|
||||
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
||||
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
||||
@ -101,16 +119,16 @@ def get_batch(split):
|
||||
return x, y
|
||||
|
||||
# model init
|
||||
# TODO I don't love this whole part/API yet
|
||||
model_args = dict(n_layer = n_layer, n_head = n_head, n_embd = n_embd, block_size = block_size, dropout = dropout)
|
||||
if init_from == 'scratch':
|
||||
# init a new model from scratch
|
||||
gptconf = GPTConfig(**model_args)
|
||||
model = GPT(gptconf)
|
||||
elif init_from == 'resume':
|
||||
# resume training from a checkpoint. TODO: do we resume iter_num etc too? (yes...)
|
||||
# resume training from a checkpoint.
|
||||
# TODO: should we also resume iter_num and best_val_loss?
|
||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||
checkpoint = torch.load(ckpt_path)
|
||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||
checkpoint_model_args = checkpoint['model_args']
|
||||
for k, v in model_args.items():
|
||||
assert checkpoint_model_args[k] == v, "for now"
|
||||
@ -120,10 +138,20 @@ elif init_from == 'resume':
|
||||
elif init_from.startswith('gpt2'):
|
||||
# initialize from OpenAI GPT-2 weights
|
||||
model = GPT.from_pretrained(init_from)
|
||||
if block_size < model.block_size:
|
||||
model.crop_block_size(block_size)
|
||||
# crop down the model block size if desired
|
||||
if block_size < model.block_size:
|
||||
model.crop_block_size(block_size)
|
||||
model.to(device)
|
||||
|
||||
# optimizer
|
||||
optimizer = model.configure_optimizers(weight_decay, learning_rate, betas)
|
||||
if init_from == 'resume':
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
|
||||
# wrap model into DDP container
|
||||
if ddp:
|
||||
model = DDP(model, device_ids=[gpu_id])
|
||||
|
||||
@torch.no_grad()
|
||||
def estimate_loss():
|
||||
out = {}
|
||||
@ -139,11 +167,6 @@ def estimate_loss():
|
||||
model.train()
|
||||
return out
|
||||
|
||||
# optimizer
|
||||
optimizer = model.configure_optimizers(weight_decay, learning_rate, betas)
|
||||
if init_from == 'resume':
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
|
||||
# learning rate decay scheduler (cosine with warmup)
|
||||
def get_lr(iter):
|
||||
# 1) linear warmup for warmup_iters steps
|
||||
@ -155,11 +178,11 @@ def get_lr(iter):
|
||||
# 3) in between, use cosine decay down to min learning rate
|
||||
decay_ratio = (iter - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||
assert 0 <= decay_ratio <= 1
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # ranges 0..1
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
||||
return min_lr + coeff * (learning_rate - min_lr)
|
||||
|
||||
# logging
|
||||
if wandb_log:
|
||||
if wandb_log and gpu_id == 0:
|
||||
wandb.init(project=wandb_project, entity=wandb_entity, name=wandb_run_name)
|
||||
wandb.config = {
|
||||
"batch_size": batch_size,
|
||||
@ -169,7 +192,6 @@ if wandb_log:
|
||||
|
||||
# training loop
|
||||
iter_num = 0
|
||||
num_tokens = 0
|
||||
best_val_loss = 1e9
|
||||
t0 = time.time()
|
||||
while True:
|
||||
@ -182,25 +204,26 @@ while True:
|
||||
else:
|
||||
lr = learning_rate
|
||||
|
||||
if iter_num % eval_interval == 0:
|
||||
if iter_num % eval_interval == 0 and gpu_id == 0:
|
||||
losses = estimate_loss()
|
||||
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
||||
if wandb_log:
|
||||
wandb.log({
|
||||
"iter": iter_num,
|
||||
"num_tokens": num_tokens,
|
||||
"train/loss": losses['train'],
|
||||
"val/loss": losses['val'],
|
||||
"lr": lr,
|
||||
})
|
||||
if losses['val'] < best_val_loss:
|
||||
best_val_loss = losses['val']
|
||||
if iter_num > 0: # don't save checkpoints on very first iteration...
|
||||
raw_model = model.module if ddp else model
|
||||
if iter_num > 0:
|
||||
checkpoint = {
|
||||
'model': model.state_dict(),
|
||||
'model': raw_model.state_dict(),
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'model_args': model_args,
|
||||
'iter_num': iter_num,
|
||||
'best_val_loss': best_val_loss,
|
||||
}
|
||||
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
||||
if iter_num == 0 and eval_only:
|
||||
@ -212,19 +235,19 @@ while True:
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
# TODO: gradient clipping
|
||||
# TODO: gradient clipping evaluate need for
|
||||
optimizer.step()
|
||||
|
||||
t1 = time.time()
|
||||
dt = t1 - t0
|
||||
t0 = t1
|
||||
if iter_num % log_interval == 0:
|
||||
if iter_num % log_interval == 0 and gpu_id == 0:
|
||||
lossf = loss.item() # loss as float. TODO CPU-GPU sync: profile, make sure not slow af
|
||||
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms")
|
||||
iter_num += 1
|
||||
num_tokens += X.numel()
|
||||
|
||||
# termination conditions
|
||||
if iter_num >= max_iters:
|
||||
break
|
||||
|
||||
destroy_process_group()
|
||||
|
Loading…
Reference in New Issue
Block a user