mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-11-10 20:09:58 +00:00
candidate changes to apis, have to think through more
This commit is contained in:
parent
7c6ea8409e
commit
2febf4463c
10
README.md
10
README.md
@ -42,6 +42,16 @@ $ python sample.py
|
||||
|
||||
Training on 1 A100 40GB GPU overnight currently gets loss ~3.74, training on 4 gets ~3.60. Random chance at init is -ln(1/50257) = 10.82. Which brings us to baselines:
|
||||
|
||||
## finetuning
|
||||
|
||||
For an example of how to finetune a GPT on new text go to `data/shakespeare` and look at `prepare.py` to download the tiny shakespeare dataset and render it into a `train.bin` and `val.bin`. Unlike OpenWebText this will run in seconds. Finetuning takes very little time, e.g. on a single GPT just a few minutes. Run an example finetuning like:
|
||||
|
||||
```
|
||||
$ python train.py finetune_shakespeare
|
||||
```
|
||||
|
||||
This will load the config parameter overrides in `config/finetune_shakespeare.py` (I didn't tune them much though). Basically, we initialize from a GPT2 checkpoint with `init_from` and train as normal, except shorter and with a small learning rate. The best checkpoint (lowest validation loss) will be in the `out_dir` directory, e.g. in `out-shakespeare` by default, per the config file. You can then run the code in `sample.py` to generate infinite Shakespeare. Note that you'll have to edit it to point to the correct `out_dir`.
|
||||
|
||||
## baselines
|
||||
|
||||
OpenAI GPT-2 checkpoints allow us to get some baselines in place for openwebtext. We can get the numbers as follows:
|
||||
|
22
config/finetune_shakespeare.py
Normal file
22
config/finetune_shakespeare.py
Normal file
@ -0,0 +1,22 @@
|
||||
import time
|
||||
|
||||
out_dir = 'out-shakespeare'
|
||||
eval_interval = 200
|
||||
wandb_log = False # feel free to turn on
|
||||
wandb_project = 'shakespeare'
|
||||
wandb_run_name = 'ft-' + str(time.time())
|
||||
compile_model = False # takes too little time to finetune, not worth it
|
||||
|
||||
# save a nice and overfit checkpoint that
|
||||
# will only speak Shakespeare and forgets
|
||||
# everything else about the world #dark
|
||||
always_save_checkpoint = True
|
||||
|
||||
dataset = 'shakespeare'
|
||||
init_from = 'gpt2-xl'
|
||||
batch_size = 1
|
||||
block_size = 512
|
||||
|
||||
learning_rate = 1e-5
|
||||
max_iters = 1000
|
||||
decay_lr = False
|
@ -35,6 +35,7 @@ enc = tiktoken.get_encoding("gpt2")
|
||||
def process(example):
|
||||
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
||||
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
||||
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
||||
out = {'ids': ids, 'len': len(ids)}
|
||||
return out
|
||||
|
||||
|
32
data/shakespeare/prepare.py
Normal file
32
data/shakespeare/prepare.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os
|
||||
import requests
|
||||
import tiktoken
|
||||
import numpy as np
|
||||
|
||||
# download the tiny shakespeare dataset
|
||||
if not os.path.exists('input.txt'):
|
||||
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
||||
with open('input.txt', 'w') as f:
|
||||
f.write(requests.get(data_url).text)
|
||||
|
||||
with open('input.txt', 'r') as f:
|
||||
data = f.read()
|
||||
n = len(data)
|
||||
train_data = data[:int(n*0.9)]
|
||||
val_data = data[int(n*0.9):]
|
||||
|
||||
# encode with tiktoken gpt2 bpe
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
train_ids = enc.encode_ordinary(train_data)
|
||||
val_ids = enc.encode_ordinary(val_data)
|
||||
print(f"train has {len(train_ids)} tokens")
|
||||
print(f"val has {len(val_ids)} tokens")
|
||||
|
||||
# export to bin files
|
||||
train_ids = np.array(train_ids, dtype=np.uint16)
|
||||
val_ids = np.array(val_ids, dtype=np.uint16)
|
||||
train_ids.tofile('train.bin')
|
||||
val_ids.tofile('val.bin')
|
||||
|
||||
# train.bin has 301,966 tokens
|
||||
# val.bin has 36,059 tokens
|
9
data/shakespeare/readme.md
Normal file
9
data/shakespeare/readme.md
Normal file
@ -0,0 +1,9 @@
|
||||
|
||||
# tiny shakespeare
|
||||
|
||||
Tiny shakespeare, of the good old char-rnn fame :)
|
||||
|
||||
After running `prepare.py`:
|
||||
|
||||
- train.bin has 301,966 tokens
|
||||
- val.bin has 36,059 tokens
|
27
model.py
27
model.py
@ -90,7 +90,7 @@ class Block(nn.Module):
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@dataclass
|
||||
class GPTConfig:
|
||||
block_size: int = 1024
|
||||
vocab_size: int = 50257
|
||||
@ -105,7 +105,7 @@ class GPT(nn.Module):
|
||||
super().__init__()
|
||||
assert config.vocab_size is not None
|
||||
assert config.block_size is not None
|
||||
self.block_size = config.block_size
|
||||
self.config = config
|
||||
|
||||
self.transformer = nn.ModuleDict(dict(
|
||||
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
||||
@ -123,7 +123,7 @@ class GPT(nn.Module):
|
||||
def forward(self, idx, targets=None):
|
||||
device = idx.device
|
||||
b, t = idx.size()
|
||||
assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
|
||||
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
||||
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
||||
|
||||
# forward the GPT model itself
|
||||
@ -146,27 +146,36 @@ class GPT(nn.Module):
|
||||
# model surgery to decrease the block size if necessary
|
||||
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
||||
# but want to use a smaller block size for some smaller, simpler model
|
||||
assert block_size <= self.block_size
|
||||
self.block_size = block_size
|
||||
assert block_size <= self.config.block_size
|
||||
self.config.block_size = block_size
|
||||
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
||||
for block in self.transformer.h:
|
||||
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_type):
|
||||
def from_pretrained(cls, model_type, override_args):
|
||||
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
||||
# only dropout can be overridden see more notes below
|
||||
assert all(k == 'dropout' for k in override_args)
|
||||
from transformers import GPT2LMHeadModel
|
||||
print("loading weights from pretrained gpt: %s" % model_type)
|
||||
|
||||
layer_config = {
|
||||
# n_layer, n_head and n_embd are determined from model_type
|
||||
config_args = {
|
||||
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
||||
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
||||
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
||||
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
||||
}[model_type]
|
||||
# we can override the dropout rate
|
||||
if 'dropout' in override_args:
|
||||
config_args['dropout'] = override_args['dropout']
|
||||
# block_size is always 1024 for GPT model checkpoints
|
||||
# if one wants a lower block_size it has to be done through model surgery
|
||||
# later, by calling crop_block_size()
|
||||
|
||||
# create a from-scratch initialized minGPT model
|
||||
config = GPTConfig(block_size=1024, **layer_config)
|
||||
config = GPTConfig(block_size=1024, **config_args)
|
||||
model = GPT(config)
|
||||
sd = model.state_dict()
|
||||
|
||||
@ -248,7 +257,7 @@ class GPT(nn.Module):
|
||||
"""
|
||||
for _ in range(max_new_tokens):
|
||||
# if the sequence context is growing too long we must crop it at block_size
|
||||
idx_cond = idx if idx.size(1) <= self.block_size else idx[:, -self.block_size:]
|
||||
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
||||
# forward the model to get the logits for the index in the sequence
|
||||
logits, _ = self(idx_cond)
|
||||
# pluck the logits at the final step and scale by desired temperature
|
||||
|
10
sample.py
10
sample.py
@ -21,18 +21,18 @@ model = GPT(gptconf)
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
model.eval()
|
||||
model.to(device)
|
||||
model = torch.compile(model) # requires PyTorch 2.0
|
||||
#model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
||||
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
#start = enc.encode("\n")
|
||||
start = [enc.eot_token]
|
||||
start = enc.encode("\n") # user choice on what token to start with
|
||||
#start = [enc.eot_token]
|
||||
x = (torch.tensor(start, dtype=torch.long, device=device)[None, ...])
|
||||
|
||||
for k in range(1):
|
||||
for k in range(10):
|
||||
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
y = model.generate(x, 300, temperature=0.8, top_k=200)
|
||||
y = model.generate(x, 500, temperature=0.8, top_k=200)
|
||||
|
||||
print(enc.decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
|
19
train.py
19
train.py
@ -31,6 +31,7 @@ eval_interval = 500
|
||||
log_interval = 1
|
||||
eval_iters = 50
|
||||
eval_only = False # if True, script exits right after the first eval
|
||||
always_save_checkpoint = False # if True, always save a checkpoint after each eval
|
||||
# wandb logging
|
||||
wandb_log = False # disabled by default
|
||||
wandb_entity = 'karpathy'
|
||||
@ -138,6 +139,7 @@ elif init_from == 'resume':
|
||||
checkpoint_model_args = checkpoint['model_args']
|
||||
for k, v in model_args.items():
|
||||
assert checkpoint_model_args[k] == v, "for now"
|
||||
# TODO: think through how passed in params should interact with checkpoint params
|
||||
gptconf = GPTConfig(**model_args)
|
||||
model = GPT(gptconf)
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
@ -146,9 +148,14 @@ elif init_from == 'resume':
|
||||
elif init_from.startswith('gpt2'):
|
||||
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
||||
# initialize from OpenAI GPT-2 weights
|
||||
model = GPT.from_pretrained(init_from)
|
||||
override_args = dict(dropout=dropout)
|
||||
model = GPT.from_pretrained(init_from, override_args)
|
||||
# read off and override the GPT sizing model args from the model config
|
||||
model_args['n_layer'] = model.config.n_layer
|
||||
model_args['n_head'] = model.config.n_head
|
||||
model_args['n_embd'] = model.config.n_embd
|
||||
# crop down the model block size if desired
|
||||
if block_size < model.block_size:
|
||||
if block_size < model.config.block_size:
|
||||
model.crop_block_size(block_size)
|
||||
model.to(device)
|
||||
|
||||
@ -227,7 +234,7 @@ while True:
|
||||
"val/loss": losses['val'],
|
||||
"lr": lr,
|
||||
})
|
||||
if losses['val'] < best_val_loss:
|
||||
if losses['val'] < best_val_loss or always_save_checkpoint:
|
||||
best_val_loss = losses['val']
|
||||
raw_model = model.module if ddp else model
|
||||
if iter_num > 0:
|
||||
@ -238,6 +245,7 @@ while True:
|
||||
'iter_num': iter_num,
|
||||
'best_val_loss': best_val_loss,
|
||||
}
|
||||
print(f"saving checkpoint to {out_dir}")
|
||||
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
||||
if iter_num == 0 and eval_only:
|
||||
break
|
||||
@ -260,7 +268,8 @@ while True:
|
||||
iter_num += 1
|
||||
|
||||
# termination conditions
|
||||
if iter_num >= max_iters:
|
||||
if iter_num > max_iters:
|
||||
break
|
||||
|
||||
destroy_process_group()
|
||||
if ddp:
|
||||
destroy_process_group()
|
||||
|
Loading…
Reference in New Issue
Block a user