1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-24 07:56:59 +00:00
gnss-sdr/src/algorithms/acquisition/libs/fpga_acquisition.cc

424 lines
18 KiB
C++
Raw Normal View History

/*!
* \file fpga_acquisition.cc
* \brief High optimized FPGA vector correlator class
* \authors <ul>
* <li> Marc Majoral, 2018. mmajoral(at)cttc.cat
* </ul>
*
* Class that controls and executes a high optimized acquisition HW
* accelerator in the FPGA
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
2018-04-30 09:59:56 +00:00
#include "fpga_acquisition.h"
#include "GPS_L1_CA.h"
2018-04-30 09:59:56 +00:00
#include "gps_sdr_signal_processing.h"
#include <glog/logging.h>
#include <iostream>
#include <fcntl.h> // libraries used by the GIPO
#include <sys/mman.h> // libraries used by the GIPO
2018-04-30 09:59:56 +00:00
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
#define RESET_ACQUISITION 2 // command to reset the multicorrelator
#define LAUNCH_ACQUISITION 1 // command to launch the multicorrelator
#define TEST_REG_SANITY_CHECK 0x55AA // value to check the presence of the test register (to detect the hw)
#define LOCAL_CODE_CLEAR_MEM 0x10000000 // command to clear the internal memory of the multicorrelator
#define MEM_LOCAL_CODE_WR_ENABLE 0x0C000000 // command to enable the ENA and WR pins of the internal memory of the multicorrelator
#define POW_2_2 4 // 2^2 (used for the conversion of floating point numbers to integers)
#define POW_2_29 536870912 // 2^29 (used for the conversion of floating point numbers to integers)
#define SELECT_LSB 0x00FF // value to select the least significant byte
#define SELECT_MSB 0XFF00 // value to select the most significant byte
#define SELECT_16_BITS 0xFFFF // value to select 16 bits
#define SHL_8_BITS 256 // value used to shift a value 8 bits to the left
2018-04-30 09:59:56 +00:00
// 12-bits
//#define SELECT_LSBits 0x0FFF
//#define SELECT_MSBbits 0x00FFF000
//#define SELECT_24_BITS 0x00FFFFFF
//#define SHL_12_BITS 4096
// 16-bits
#define SELECT_LSBits 0x0FFFF
#define SELECT_MSBbits 0xFFFF0000
#define SELECT_32_BITS 0xFFFFFFFF
#define SHL_16_BITS 65536
bool fpga_acquisition::init()
2017-05-08 21:03:42 +00:00
{
2017-05-18 15:10:28 +00:00
// configure the acquisition with the main initialization values
fpga_acquisition::configure_acquisition();
2017-05-18 15:10:28 +00:00
return true;
}
2017-05-08 21:03:42 +00:00
bool fpga_acquisition::set_local_code(uint32_t PRN)
2017-05-18 15:10:28 +00:00
{
// select the code with the chosen PRN
fpga_acquisition::fpga_configure_acquisition_local_code(
&d_all_fft_codes[d_nsamples_total * (PRN - 1)]);
//fpga_acquisition::fpga_configure_acquisition_local_code(
// &d_all_fft_codes[0]);
return true;
}
fpga_acquisition::fpga_acquisition(std::string device_name,
uint32_t nsamples,
uint32_t doppler_max,
uint32_t nsamples_total, int64_t fs_in,
uint32_t sampled_ms, uint32_t select_queue,
lv_16sc_t *all_fft_codes)
{
//printf("AAA- sampled_ms = %d\n ", sampled_ms);
uint32_t vector_length = nsamples_total; // * sampled_ms;
//printf("AAA- vector_length = %d\n ", vector_length);
// initial values
d_device_name = device_name;
//d_freq = freq;
2017-05-18 15:10:28 +00:00
d_fs_in = fs_in;
d_vector_length = vector_length;
d_nsamples = nsamples; // number of samples not including padding
2017-05-18 15:10:28 +00:00
d_select_queue = select_queue;
2018-03-02 11:23:10 +00:00
d_nsamples_total = nsamples_total;
d_doppler_max = doppler_max;
2017-05-18 15:10:28 +00:00
d_doppler_step = 0;
d_fd = 0; // driver descriptor
d_map_base = nullptr; // driver memory map
d_all_fft_codes = all_fft_codes;
2018-03-02 11:23:10 +00:00
// open communication with HW accelerator
if ((d_fd = open(d_device_name.c_str(), O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << d_device_name;
std::cout << "Acq: cannot open deviceio" << d_device_name << std::endl;
}
d_map_base = reinterpret_cast<volatile uint32_t *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0));
if (d_map_base == reinterpret_cast<void *>(-1))
2018-03-02 11:23:10 +00:00
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
std::cout << "Acq: cannot map deviceio" << d_device_name << std::endl;
2018-03-02 11:23:10 +00:00
}
2018-03-02 11:23:10 +00:00
// sanity check : check test register
uint32_t writeval = TEST_REG_SANITY_CHECK;
uint32_t readval;
readval = fpga_acquisition::fpga_acquisition_test_register(writeval);
2018-03-02 11:23:10 +00:00
if (writeval != readval)
{
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
LOG(INFO) << "Acquisition test register sanity check success!";
//std::cout << "Acquisition test register sanity check success!" << std::endl;
2018-03-02 11:23:10 +00:00
}
fpga_acquisition::reset_acquisition();
2018-03-02 11:23:10 +00:00
DLOG(INFO) << "Acquisition FPGA class created";
}
fpga_acquisition::~fpga_acquisition()
2017-05-18 15:10:28 +00:00
{
2018-03-02 11:23:10 +00:00
close_device();
2017-05-18 15:10:28 +00:00
}
bool fpga_acquisition::free()
{
return true;
}
uint32_t fpga_acquisition::fpga_acquisition_test_register(uint32_t writeval)
{
uint32_t readval;
2017-05-08 21:03:42 +00:00
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
// return read value
return readval;
}
void fpga_acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
{
uint32_t local_code;
uint32_t k, tmp, tmp2;
uint32_t fft_data;
2017-05-08 21:03:42 +00:00
// clear memory address counter
//d_map_base[6] = LOCAL_CODE_CLEAR_MEM;
d_map_base[9] = LOCAL_CODE_CLEAR_MEM;
2018-03-02 11:23:10 +00:00
// write local code
2017-05-18 15:10:28 +00:00
for (k = 0; k < d_vector_length; k++)
2017-05-08 21:03:42 +00:00
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
//tmp = k;
//tmp2 = k;
//local_code = (tmp & SELECT_LSB) | ((tmp2 * SHL_8_BITS) & SELECT_MSB); // put together the real part and the imaginary part
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_16_BITS);
//local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_12_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_16_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_24_BITS);
fft_data = local_code & SELECT_32_BITS;
d_map_base[6] = fft_data;
//printf("debug local code %d real = %d imag = %d local_code = %d fft_data = %d\n", k, tmp, tmp2, local_code, fft_data);
//printf("debug local code %d real = 0x%08X imag = 0x%08X local_code = 0x%08X fft_data = 0x%08X\n", k, tmp, tmp2, local_code, fft_data);
2017-05-08 21:03:42 +00:00
}
//printf("d_vector_length = %d\n", d_vector_length);
//while(1);
}
void fpga_acquisition::run_acquisition(void)
{
2017-05-08 21:03:42 +00:00
// enable interrupts
int32_t reenable = 1;
write(d_fd, reinterpret_cast<void *>(&reenable), sizeof(int32_t));
2018-03-02 11:23:10 +00:00
// launch the acquisition process
//printf("launchin acquisition ...\n");
d_map_base[8] = LAUNCH_ACQUISITION; // writing a 1 to reg 8 launches the acquisition process
int32_t irq_count;
ssize_t nb;
// wait for interrupt
nb = read(d_fd, &irq_count, sizeof(irq_count));
//printf("interrupt received\n");
if (nb != sizeof(irq_count))
{
2018-03-02 11:23:10 +00:00
printf("acquisition module Read failed to retrieve 4 bytes!\n");
printf("acquisition module Interrupt number %d\n", irq_count);
}
}
void fpga_acquisition::set_doppler_sweep(uint32_t num_sweeps)
{
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
//int32_t doppler = static_cast<int32_t>(-d_doppler_max) + d_doppler_step * doppler_index;
int32_t doppler = static_cast<int32_t>(-d_doppler_max);
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAA phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
// repeat the calculation with the doppler step
doppler = static_cast<int32_t>(d_doppler_step);
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAA phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
d_map_base[4] = phase_step_rad_int;
//printf("AAA writing num sweeps to d map base 5 = %d\n", num_sweeps);
d_map_base[5] = num_sweeps;
}
void fpga_acquisition::set_doppler_sweep_debug(uint32_t num_sweeps, uint32_t doppler_index)
{
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
//int32_t doppler = static_cast<int32_t>(-d_doppler_max);
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAAh phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAAh phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAAh writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
// repeat the calculation with the doppler step
doppler = static_cast<int32_t>(d_doppler_step);
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAAh phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAAh phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAAh writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
d_map_base[4] = phase_step_rad_int;
//printf("AAAh writing num sweeps to d map base 5 = %d\n", num_sweeps);
d_map_base[5] = num_sweeps;
}
void fpga_acquisition::configure_acquisition()
{
//printf("AAA d_select_queue = %d\n", d_select_queue);
2017-05-08 21:03:42 +00:00
d_map_base[0] = d_select_queue;
//printf("AAA writing d_vector_length = %d to d map base 1\n ", d_vector_length);
2017-05-18 15:10:28 +00:00
d_map_base[1] = d_vector_length;
//printf("AAA writing d_nsamples = %d to d map base 2\n ", d_nsamples);
2017-05-08 21:03:42 +00:00
d_map_base[2] = d_nsamples;
//printf("AAA writing LOG2 d_vector_length = %d to d map base 7\n ", (int)log2((float)d_vector_length));
d_map_base[7] = static_cast<int32_t>(log2(static_cast<float>(d_vector_length))); // log2 FFTlength
//printf("acquisition debug vector length = %d\n", d_vector_length);
//printf("acquisition debug vector length = %d\n", (int)log2((float)d_vector_length));
}
void fpga_acquisition::set_phase_step(uint32_t doppler_index)
{
2017-05-08 21:03:42 +00:00
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
2017-05-18 15:10:28 +00:00
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAA+ phase_step_rad_real = %f\n", phase_step_rad_real);
2018-03-02 11:23:10 +00:00
if (phase_step_rad_real >= 1.0)
2017-05-18 15:10:28 +00:00
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
2017-05-18 15:10:28 +00:00
}
//printf("AAA+ phase_step_rad_real after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("writing phase_step_rad_int = %d to d_map_base 3\n", phase_step_rad_int);
2017-05-08 21:03:42 +00:00
d_map_base[3] = phase_step_rad_int;
}
void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index)
{
uint64_t initial_sample_tmp = 0;
uint32_t readval = 0;
uint64_t readval_long = 0;
uint64_t readval_long_shifted = 0;
2017-05-08 21:03:42 +00:00
readval = d_map_base[1];
initial_sample_tmp = readval;
readval_long = d_map_base[2];
readval_long_shifted = readval_long << 32; // 2^32
initial_sample_tmp = initial_sample_tmp + readval_long_shifted; // 2^32
//printf("----------------------------------------------------------------> acq initial sample TOTAL = %llu\n", initial_sample_tmp);
*initial_sample = initial_sample_tmp;
readval = d_map_base[6];
*max_magnitude = static_cast<float>(readval);
//printf("read max_magnitude dmap 2 = %d\n", readval);
2017-05-08 21:03:42 +00:00
readval = d_map_base[4];
*power_sum = static_cast<float>(readval);
//printf("read power sum dmap 4 = %d\n", readval);
readval = d_map_base[5]; // read doppler index
*doppler_index = readval;
//printf("read doppler_index dmap 5 = %d\n", readval);
2017-05-08 21:03:42 +00:00
readval = d_map_base[3];
*max_index = readval;
//printf("read max index dmap 3 = %d\n", readval);
}
void fpga_acquisition::block_samples()
{
d_map_base[14] = 1; // block the samples
}
void fpga_acquisition::unblock_samples()
{
d_map_base[14] = 0; // unblock the samples
}
void fpga_acquisition::close_device()
2017-05-18 15:10:28 +00:00
{
uint32_t *aux = const_cast<uint32_t *>(d_map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
2017-05-18 15:10:28 +00:00
{
printf("Failed to unmap memory uio\n");
}
close(d_fd);
}
void fpga_acquisition::reset_acquisition(void)
2018-03-02 11:23:10 +00:00
{
d_map_base[8] = RESET_ACQUISITION; // writing a 2 to d_map_base[8] resets the multicorrelator
2018-03-02 11:23:10 +00:00
}