1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-21 06:27:01 +00:00

Avoid claah between volk and volk_gnsssdr defines

This commit is contained in:
Carles Fernandez 2018-04-30 20:58:53 +02:00
parent faf27fff22
commit 0494d9b5a8
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
5 changed files with 83 additions and 75 deletions

View File

@ -40,7 +40,6 @@
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h"
#include <gnuradio/fft/fft.h>
#include <volk/volk.h>
#include <glog/logging.h>
#include <new>

View File

@ -40,6 +40,7 @@
#include "acquisition_interface.h"
#include "gnss_synchro.h"
#include "pcps_acquisition_fpga.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <string>
class ConfigurationInterface;

View File

@ -57,9 +57,9 @@
#define GNSS_SDR_PCPS_ACQUISITION_FPGA_H_
#include <gnuradio/block.h>
#include "fpga_acquisition.h"
#include "gnss_synchro.h"
#include <gnuradio/block.h>
typedef struct
{
@ -72,7 +72,7 @@ typedef struct
int samples_per_code;
unsigned int select_queue_Fpga;
std::string device_name;
lv_16sc_t *all_fft_codes; // memory that contains all the code ffts
lv_16sc_t* all_fft_codes; // memory that contains all the code ffts
} pcpsconf_fpga_t;

View File

@ -33,32 +33,27 @@
* -------------------------------------------------------------------------
*/
// libraries used by the GIPO
#include <fcntl.h>
#include <sys/mman.h>
// logging
#include <glog/logging.h>
// GPS L1
#include "GPS_L1_CA.h"
#include "fpga_acquisition.h"
#include "GPS_L1_CA.h"
#include "gps_sdr_signal_processing.h"
#include <glog/logging.h>
#include <fcntl.h> // libraries used by the GIPO
#include <sys/mman.h> // libraries used by the GIPO
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
#define RESET_ACQUISITION 2 // command to reset the multicorrelator
#define LAUNCH_ACQUISITION 1 // command to launch the multicorrelator
#define TEST_REG_SANITY_CHECK 0x55AA // value to check the presence of the test register (to detect the hw)
#define LOCAL_CODE_CLEAR_MEM 0x10000000 // command to clear the internal memory of the multicorrelator
#define MEM_LOCAL_CODE_WR_ENABLE 0x0C000000 // command to enable the ENA and WR pins of the internal memory of the multicorrelator
#define POW_2_2 4 // 2^2 (used for the conversion of floating point numbers to integers)
#define POW_2_29 536870912 // 2^29 (used for the conversion of floating point numbers to integers)
#define SELECT_LSB 0x00FF // value to select the least significant byte
#define SELECT_MSB 0XFF00 // value to select the most significant byte
#define SELECT_16_BITS 0xFFFF // value to select 16 bits
#define SHL_8_BITS 256 // value used to shift a value 8 bits to the left
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
#define RESET_ACQUISITION 2 // command to reset the multicorrelator
#define LAUNCH_ACQUISITION 1 // command to launch the multicorrelator
#define TEST_REG_SANITY_CHECK 0x55AA // value to check the presence of the test register (to detect the hw)
#define LOCAL_CODE_CLEAR_MEM 0x10000000 // command to clear the internal memory of the multicorrelator
#define MEM_LOCAL_CODE_WR_ENABLE 0x0C000000 // command to enable the ENA and WR pins of the internal memory of the multicorrelator
#define POW_2_2 4 // 2^2 (used for the conversion of floating point numbers to integers)
#define POW_2_29 536870912 // 2^29 (used for the conversion of floating point numbers to integers)
#define SELECT_LSB 0x00FF // value to select the least significant byte
#define SELECT_MSB 0XFF00 // value to select the most significant byte
#define SELECT_16_BITS 0xFFFF // value to select 16 bits
#define SHL_8_BITS 256 // value used to shift a value 8 bits to the left
bool fpga_acquisition::init()
@ -68,34 +63,36 @@ bool fpga_acquisition::init()
return true;
}
bool fpga_acquisition::set_local_code(unsigned int PRN)
{
// select the code with the chosen PRN
fpga_acquisition::fpga_configure_acquisition_local_code(
&d_all_fft_codes[d_nsamples_total * (PRN - 1)]);
&d_all_fft_codes[d_nsamples_total * (PRN - 1)]);
return true;
}
fpga_acquisition::fpga_acquisition(std::string device_name,
unsigned int nsamples,
unsigned int doppler_max,
unsigned int nsamples_total, long fs_in, long freq,
unsigned int sampled_ms, unsigned select_queue,
lv_16sc_t *all_fft_codes)
unsigned int nsamples,
unsigned int doppler_max,
unsigned int nsamples_total, long fs_in, long freq,
unsigned int sampled_ms, unsigned select_queue,
lv_16sc_t *all_fft_codes)
{
unsigned int vector_length = nsamples_total*sampled_ms;
unsigned int vector_length = nsamples_total * sampled_ms;
// initial values
d_device_name = device_name;
d_freq = freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_nsamples = nsamples; // number of samples not including padding
d_nsamples = nsamples; // number of samples not including padding
d_select_queue = select_queue;
d_nsamples_total = nsamples_total;
d_doppler_max = doppler_max;
d_doppler_step = 0;
d_fd = 0; // driver descriptor
d_map_base = nullptr; // driver memory map
d_fd = 0; // driver descriptor
d_map_base = nullptr; // driver memory map
d_all_fft_codes = all_fft_codes;
// open communication with HW accelerator
@ -104,9 +101,9 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
LOG(WARNING) << "Cannot open deviceio" << d_device_name;
}
d_map_base = reinterpret_cast<volatile unsigned *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0));
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0));
if (d_map_base == reinterpret_cast<void*>(-1))
if (d_map_base == reinterpret_cast<void *>(-1))
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
}
@ -121,23 +118,25 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
}
else
{
LOG(INFO) << "Acquisition test register sanity check success !";
LOG(INFO) << "Acquisition test register sanity check success!";
}
fpga_acquisition::reset_acquisition();
DLOG(INFO) << "Acquisition FPGA class created";
}
fpga_acquisition::~fpga_acquisition()
{
close_device();
}
bool fpga_acquisition::free()
{
return true;
}
unsigned fpga_acquisition::fpga_acquisition_test_register(unsigned writeval)
{
unsigned readval;
@ -149,6 +148,7 @@ unsigned fpga_acquisition::fpga_acquisition_test_register(unsigned writeval)
return readval;
}
void fpga_acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
{
unsigned short local_code;
@ -161,19 +161,20 @@ void fpga_acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
local_code = (tmp & SELECT_LSB) | ((tmp2 * SHL_8_BITS) & SELECT_MSB); // put together the real part and the imaginary part
local_code = (tmp & SELECT_LSB) | ((tmp2 * SHL_8_BITS) & SELECT_MSB); // put together the real part and the imaginary part
fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_16_BITS);
d_map_base[4] = fft_data;
}
}
void fpga_acquisition::run_acquisition(void)
{
// enable interrupts
int reenable = 1;
write(d_fd, reinterpret_cast<void*>(&reenable), sizeof(int));
write(d_fd, reinterpret_cast<void *>(&reenable), sizeof(int));
// launch the acquisition process
d_map_base[6] = LAUNCH_ACQUISITION; // writing anything to reg 6 launches the acquisition process
d_map_base[6] = LAUNCH_ACQUISITION; // writing anything to reg 6 launches the acquisition process
int irq_count;
ssize_t nb;
@ -186,14 +187,16 @@ void fpga_acquisition::run_acquisition(void)
}
}
void fpga_acquisition::configure_acquisition()
{
d_map_base[0] = d_select_queue;
d_map_base[1] = d_vector_length;
d_map_base[2] = d_nsamples;
d_map_base[5] = (int) log2((float) d_vector_length); // log2 FFTlength
d_map_base[5] = (int)log2((float)d_vector_length); // log2 FFTlength
}
void fpga_acquisition::set_phase_step(unsigned int doppler_index)
{
float phase_step_rad_real;
@ -212,13 +215,14 @@ void fpga_acquisition::set_phase_step(unsigned int doppler_index)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = (int32_t)(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
d_map_base[3] = phase_step_rad_int;
}
void fpga_acquisition::read_acquisition_results(uint32_t* max_index,
float* max_magnitude, unsigned *initial_sample, float *power_sum)
void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, unsigned *initial_sample, float *power_sum)
{
unsigned readval = 0;
readval = d_map_base[1];
@ -231,28 +235,31 @@ void fpga_acquisition::read_acquisition_results(uint32_t* max_index,
*max_index = readval;
}
void fpga_acquisition::block_samples()
{
d_map_base[14] = 1; // block the samples
d_map_base[14] = 1; // block the samples
}
void fpga_acquisition::unblock_samples()
{
d_map_base[14] = 0; // unblock the samples
d_map_base[14] = 0; // unblock the samples
}
void fpga_acquisition::close_device()
{
unsigned * aux = const_cast<unsigned*>(d_map_base);
if (munmap(static_cast<void*>(aux), PAGE_SIZE) == -1)
unsigned *aux = const_cast<unsigned *>(d_map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
{
printf("Failed to unmap memory uio\n");
}
close(d_fd);
}
void fpga_acquisition::reset_acquisition(void)
{
d_map_base[6] = RESET_ACQUISITION; // writing a 2 to d_map_base[6] resets the multicorrelator
d_map_base[6] = RESET_ACQUISITION; // writing a 2 to d_map_base[6] resets the multicorrelator
}

View File

@ -36,8 +36,8 @@
#ifndef GNSS_SDR_FPGA_ACQUISITION_H_
#define GNSS_SDR_FPGA_ACQUISITION_H_
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <gnuradio/fft/fft.h>
#include <volk/volk.h>
/*!
* \brief Class that implements carrier wipe-off and correlators.
@ -46,18 +46,20 @@ class fpga_acquisition
{
public:
fpga_acquisition(std::string device_name,
unsigned int nsamples,
unsigned int doppler_max,
unsigned int nsamples_total, long fs_in, long freq,
unsigned int sampled_ms, unsigned select_queue,
lv_16sc_t *all_fft_codes);
~fpga_acquisition();bool init();bool set_local_code(
unsigned int PRN);
unsigned int nsamples,
unsigned int doppler_max,
unsigned int nsamples_total, long fs_in, long freq,
unsigned int sampled_ms, unsigned select_queue,
lv_16sc_t *all_fft_codes);
~fpga_acquisition();
bool init();
bool set_local_code(
unsigned int PRN);
bool free();
void run_acquisition(void);
void set_phase_step(unsigned int doppler_index);
void read_acquisition_results(uint32_t* max_index, float* max_magnitude,
unsigned *initial_sample, float *power_sum);
void read_acquisition_results(uint32_t *max_index, float *max_magnitude,
unsigned *initial_sample, float *power_sum);
void block_samples();
void unblock_samples();
@ -80,21 +82,20 @@ public:
}
private:
long d_freq;
long d_fs_in;
gr::fft::fft_complex* d_fft_if; // function used to run the fft of the local codes
gr::fft::fft_complex *d_fft_if; // function used to run the fft of the local codes
// data related to the hardware module and the driver
int d_fd; // driver descriptor
volatile unsigned *d_map_base; // driver memory map
lv_16sc_t *d_all_fft_codes; // memory that contains all the code ffts
unsigned int d_vector_length; // number of samples incluing padding and number of ms
unsigned int d_nsamples_total; // number of samples including padding
unsigned int d_nsamples; // number of samples not including padding
unsigned int d_select_queue; // queue selection
std::string d_device_name; // HW device name
unsigned int d_doppler_max; // max doppler
unsigned int d_doppler_step; // doppler step
int d_fd; // driver descriptor
volatile unsigned *d_map_base; // driver memory map
lv_16sc_t *d_all_fft_codes; // memory that contains all the code ffts
unsigned int d_vector_length; // number of samples incluing padding and number of ms
unsigned int d_nsamples_total; // number of samples including padding
unsigned int d_nsamples; // number of samples not including padding
unsigned int d_select_queue; // queue selection
std::string d_device_name; // HW device name
unsigned int d_doppler_max; // max doppler
unsigned int d_doppler_step; // doppler step
// FPGA private functions
unsigned fpga_acquisition_test_register(unsigned writeval);
void fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[]);