mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-04-09 20:26:46 +00:00
acquisition gps unit test for the FPGA. The code is currently being cleaned
This commit is contained in:
parent
04369651f1
commit
9195740d8a
@ -0,0 +1,282 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_acquisition_fpga.cc
|
||||
* \brief Adapts a PCPS acquisition block to an FPGA Acquisition Interface for
|
||||
* GPS L1 C/A signals. This file is based on the file gps_l1_ca_pcps_acquisition.cc
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_pcps_acquisition_fpga.h"
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
|
||||
std::string default_item_type = "cshort";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type", default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
// note : the FPGA is implemented according to bit transition flag = 0. Setting bit transition flag to 1 has no effect.
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
|
||||
// note : the FPGA is implemented according to use_CFAR_algorithm = 0. Setting use_CFAR_algorithm to 1 has no effect.
|
||||
use_CFAR_algorithm_flag_=configuration_->property(role + ".use_CFAR_algorithm", false);
|
||||
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
// code length has the same value as d_fft_size
|
||||
float nbits;
|
||||
nbits = ceilf(log2f(code_length_));
|
||||
nsamples_total_ = pow(2,nbits);
|
||||
|
||||
//vector_length_ = code_length_ * sampled_ms_;
|
||||
vector_length_ = nsamples_total_ * sampled_ms_;
|
||||
|
||||
|
||||
if( bit_transition_flag_ )
|
||||
{
|
||||
vector_length_ *= 2;
|
||||
}
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("cshort") == 0 )
|
||||
{
|
||||
item_size_ = sizeof(lv_16sc_t);
|
||||
gps_acquisition_fpga_sc_ = gps_pcps_make_acquisition_fpga_sc(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_, vector_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_);
|
||||
DLOG(INFO) << "acquisition(" << gps_acquisition_fpga_sc_->unique_id() << ")";
|
||||
|
||||
}
|
||||
else{
|
||||
LOG(FATAL) << item_type_ << " FPGA only accepts chsort";
|
||||
}
|
||||
|
||||
channel_ = 0;
|
||||
threshold_ = 0.0;
|
||||
doppler_step_ = 0;
|
||||
gnss_synchro_ = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionFpga::~GpsL1CaPcpsAcquisitionFpga()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
|
||||
gps_acquisition_fpga_sc_->set_channel(channel_);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold)
|
||||
{
|
||||
float pfa = configuration_->property(role_ + ".pfa", 0.0);
|
||||
|
||||
if(pfa == 0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
|
||||
|
||||
|
||||
gps_acquisition_fpga_sc_->set_threshold(threshold_);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
|
||||
gps_acquisition_fpga_sc_->set_doppler_max(doppler_max_);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
|
||||
gps_acquisition_fpga_sc_->set_doppler_step(doppler_step_);
|
||||
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
|
||||
gps_acquisition_fpga_sc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsAcquisitionFpga::mag()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_->mag();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::init()
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->init();
|
||||
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_local_code()
|
||||
{
|
||||
|
||||
std::complex<float>* code = new std::complex<float>[vector_length_];
|
||||
|
||||
|
||||
//init to zeros for the zero padding of the fft
|
||||
for (uint s=0;s<vector_length_;s++)
|
||||
{
|
||||
code[s] = std::complex<float>(0, 0);
|
||||
}
|
||||
|
||||
unsigned long long interpolated_sampling_frequency; // warning: we need a long long to do this conversion to avoid running out of bits
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_ , 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*vector_length_]), code, sizeof(gr_complex)*vector_length_);
|
||||
|
||||
}
|
||||
|
||||
gps_acquisition_fpga_sc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::reset()
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->set_active(true);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_state(int state)
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->set_state(state);
|
||||
}
|
||||
|
||||
|
||||
|
||||
float GpsL1CaPcpsAcquisitionFpga::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
|
||||
unsigned int ncells = vector_length_ * frequency_bins;
|
||||
double exponent = 1 / static_cast<double>(ncells);
|
||||
double val = pow(1.0 - pfa, exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
|
||||
//nothing to connect
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
|
||||
//nothing to disconnect
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_left_block()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_;
|
||||
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_right_block()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_;
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,170 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_acquisition_fpga.h
|
||||
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
|
||||
* GPS L1 C/A signals. This file is based on the file gps_l1_ca_pcps_acquisition.h
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
|
||||
|
||||
#include <string>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
#include <gnuradio/blocks/float_to_complex.h>
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "gps_pcps_acquisition_fpga_sc.h"
|
||||
#include "complex_byte_to_float_x2.h"
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts a PCPS acquisition block to an AcquisitionInterface
|
||||
* for GPS L1 C/A signals
|
||||
*/
|
||||
class GpsL1CaPcpsAcquisitionFpga: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaPcpsAcquisitionFpga(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams);
|
||||
|
||||
virtual ~GpsL1CaPcpsAcquisitionFpga();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "GPS_L1_CA_PCPS_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "GPS_L1_CA_PCPS_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
/*!
|
||||
* \brief If state = 1, it forces the block to start acquiring from the first sample
|
||||
*/
|
||||
void set_state(int state);
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
gps_pcps_acquisition_fpga_sc_sptr gps_acquisition_fpga_sc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
gr::blocks::float_to_complex::sptr float_to_complex_;
|
||||
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
bool use_CFAR_algorithm_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
|
||||
unsigned int nsamples_total_;
|
||||
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_H_ */
|
@ -0,0 +1,440 @@
|
||||
/*!
|
||||
* \file gps_pcps_acquisition_fpga_sc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
|
||||
* This file is based on the file gps_pcps_acquisition_sc.cc
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_pcps_acquisition_fpga_sc.h"
|
||||
#include <sstream>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include "control_message_factory.h"
|
||||
#include "GPS_L1_CA.h" //GPS_TWO_PI
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
void wait3(int seconds)
|
||||
{
|
||||
boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
|
||||
}
|
||||
|
||||
|
||||
gps_pcps_acquisition_fpga_sc_sptr gps_pcps_make_acquisition_fpga_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return gps_pcps_acquisition_fpga_sc_sptr(
|
||||
new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, vector_length, bit_transition_flag, use_CFAR_algorithm_flag, dump, dump_filename));
|
||||
}
|
||||
|
||||
gps_pcps_acquisition_fpga_sc::gps_pcps_acquisition_fpga_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump,
|
||||
std::string dump_filename) :
|
||||
|
||||
gr::block("pcps_acquisition_fpga_sc",gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 250;
|
||||
d_code_phase = 0;
|
||||
d_test_statistics = 0.0;
|
||||
d_channel = 0;
|
||||
d_doppler_freq = 0.0;
|
||||
|
||||
d_nsamples_total = vector_length;
|
||||
|
||||
// COD:
|
||||
// Experimenting with the overlap/save technique for handling bit trannsitions
|
||||
// The problem: Circular correlation is asynchronous with the received code.
|
||||
// In effect the first code phase used in the correlation is the current
|
||||
// estimate of the code phase at the start of the input buffer. If this is 1/2
|
||||
// of the code period a bit transition would move all the signal energy into
|
||||
// adjacent frequency bands at +/- 1/T where T is the integration time.
|
||||
//
|
||||
// We can avoid this by doing linear correlation, effectively doubling the
|
||||
// size of the input buffer and padding the code with zeros.
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
//temporary storage for the input conversion from 16sc to float 32fc
|
||||
d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
d_fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_nsamples_total, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_nsamples_total, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_gnss_synchro = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
gps_pcps_acquisition_fpga_sc::~gps_pcps_acquisition_fpga_sc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
volk_gnsssdr_free(d_fft_codes);
|
||||
volk_gnsssdr_free(d_magnitude);
|
||||
volk_gnsssdr_free(d_in_32fc);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
|
||||
|
||||
|
||||
acquisition_fpga_8sc.free();
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// COD
|
||||
// Here we want to create a buffer that looks like this:
|
||||
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
|
||||
|
||||
|
||||
|
||||
int offset = 0;
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_nsamples_total, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_nsamples_total;
|
||||
}
|
||||
|
||||
|
||||
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_nsamples_total);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
volk_32fc_conjugate_32fc(d_fft_codes_padded, d_fft_if->get_outbuf(), d_nsamples_total);
|
||||
|
||||
acquisition_fpga_8sc.set_local_code(d_fft_codes_padded);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
||||
{
|
||||
static int debugint = 0;
|
||||
|
||||
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
|
||||
|
||||
float _phase[1];
|
||||
_phase[0] = 0;
|
||||
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::init()
|
||||
{
|
||||
d_gnss_synchro->Flag_valid_acquisition = false;
|
||||
d_gnss_synchro->Flag_valid_symbol_output = false;
|
||||
d_gnss_synchro->Flag_valid_pseudorange = false;
|
||||
d_gnss_synchro->Flag_valid_word = false;
|
||||
d_gnss_synchro->Flag_preamble = false;
|
||||
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
d_num_doppler_bins = ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
}
|
||||
// PENDING : SELECT_QUEUE MUST GO INTO CONFIGURATION
|
||||
unsigned select_queue = 0;
|
||||
acquisition_fpga_8sc.init(d_fft_size, d_nsamples_total, d_freq, d_doppler_max, d_doppler_step, d_num_doppler_bins, d_fs_in, select_queue);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_state(int state)
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_active(bool active)
|
||||
{
|
||||
|
||||
float temp_peak_to_noise_level = 0.0;
|
||||
float peak_to_noise_level = 0.0;
|
||||
acquisition_fpga_8sc.block_samples(); // block the samples to run the acquisition this is only necessary for the tests
|
||||
|
||||
|
||||
d_active = active;
|
||||
|
||||
|
||||
while (d_well_count < d_max_dwells)
|
||||
{
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
d_state = 1;
|
||||
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
|
||||
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
|
||||
d_mag = 0.0;
|
||||
|
||||
unsigned int initial_sample;
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
//<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
|
||||
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
acquisition_fpga_8sc.set_phase_step(doppler_index);
|
||||
acquisition_fpga_8sc.run_acquisition(); // runs acquisition and waits until it is finished
|
||||
|
||||
acquisition_fpga_8sc.read_acquisition_results(&indext, &magt, &initial_sample, &d_input_power);
|
||||
|
||||
temp_peak_to_noise_level = (float) (magt / d_input_power);
|
||||
if (peak_to_noise_level < temp_peak_to_noise_level)
|
||||
{
|
||||
peak_to_noise_level = temp_peak_to_noise_level;
|
||||
d_mag = magt;
|
||||
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = initial_sample;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_"
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
|
||||
// 6.1- Declare positive acquisition using a message port
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
//DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "sample_stamp " << initial_sample;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
acquisition_message = 1;
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
|
||||
|
||||
break;
|
||||
|
||||
}
|
||||
else //if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
|
||||
// 6.2- Declare negative acquisition using a message port
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "sample_stamp " << initial_sample;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
acquisition_message = 2;
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
acquisition_fpga_8sc.unblock_samples();
|
||||
|
||||
DLOG(INFO) << "Done. Consumed 1 item.";
|
||||
|
||||
}
|
||||
|
||||
|
||||
int gps_pcps_acquisition_fpga_sc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items __attribute__((unused)))
|
||||
{
|
||||
|
||||
return noutput_items;
|
||||
}
|
@ -0,0 +1,235 @@
|
||||
/*!
|
||||
* \file gps_pcps_acquisition_fpga_sc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
|
||||
* This file is based on the file gps_pcps_acquisition_sc.h
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation
|
||||
* <li> Doppler serial search loop
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search)
|
||||
* <li> Record the maximum peak and the associated synchronization parameters
|
||||
* <li> Compute the test statistics and compare to the threshold
|
||||
* <li> Declare positive or negative acquisition using a message port
|
||||
* </ol>
|
||||
*
|
||||
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach", Birkha user, 2007. pp 81-84
|
||||
*
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_ACQUISITION_FPGA_SC_H_
|
||||
#define GNSS_SDR_PCPS_ACQUISITION_FPGA_SC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_fpga_acquisition_8sc.h"
|
||||
|
||||
class gps_pcps_acquisition_fpga_sc;
|
||||
|
||||
typedef boost::shared_ptr<gps_pcps_acquisition_fpga_sc> gps_pcps_acquisition_fpga_sc_sptr;
|
||||
|
||||
gps_pcps_acquisition_fpga_sc_sptr
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length_,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
*
|
||||
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
|
||||
* Algorithm 1, for a pseudocode description of this implementation.
|
||||
*/
|
||||
class gps_pcps_acquisition_fpga_sc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend gps_pcps_acquisition_fpga_sc_sptr
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
gps_pcps_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void update_local_carrier(gr_complex* carrier_vector,
|
||||
int correlator_length_samples,
|
||||
float freq);
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned int d_nsamples_total; // the closest power of two approximation to d_fft_size
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
gr_complex* d_fft_codes_padded;
|
||||
gr_complex* d_in_32fc;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
bool d_use_CFAR_algorithm_flag;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
gps_fpga_acquisition_8sc acquisition_fpga_8sc;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~gps_pcps_acquisition_fpga_sc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active);
|
||||
|
||||
/*!
|
||||
* \brief If set to 1, ensures that acquisition starts at the
|
||||
* first available sample.
|
||||
* \param state - int=1 forces start of acquisition
|
||||
*/
|
||||
void set_state(int state);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/
|
91
src/algorithms/acquisition/libs/CMakeLists.txt
Normal file
91
src/algorithms/acquisition/libs/CMakeLists.txt
Normal file
@ -0,0 +1,91 @@
|
||||
# Copyright (C) 2012-2015 (see AUTHORS file for a list of contributors)
|
||||
#
|
||||
# This file is part of GNSS-SDR.
|
||||
#
|
||||
# GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# GNSS-SDR is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
|
||||
#if(ENABLE_CUDA)
|
||||
# # Append current NVCC flags by something, eg comput capability
|
||||
# # set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
|
||||
# list(APPEND CUDA_NVCC_FLAGS "-gencode arch=compute_30,code=sm_30; -std=c++11;-O3; -use_fast_math -default-stream per-thread")
|
||||
# set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
# CUDA_INCLUDE_DIRECTORIES( ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
# set(LIB_TYPE STATIC) #set the lib type
|
||||
# CUDA_ADD_LIBRARY(CUDA_CORRELATOR_LIB ${LIB_TYPE} cuda_multicorrelator.h cuda_multicorrelator.cu)
|
||||
# set(OPT_TRACKING_LIBRARIES ${OPT_TRACKING_LIBRARIES} CUDA_CORRELATOR_LIB)
|
||||
# set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS} )
|
||||
#endif(ENABLE_CUDA)
|
||||
|
||||
|
||||
|
||||
#set(TRACKING_LIB_SOURCES
|
||||
set(ACQUISITION_LIB_SOURCES
|
||||
gps_fpga_acquisition_8sc.cc
|
||||
# cpu_multicorrelator.cc
|
||||
# cpu_multicorrelator_16sc.cc
|
||||
# lock_detectors.cc
|
||||
# tcp_communication.cc
|
||||
# tcp_packet_data.cc
|
||||
# tracking_2nd_DLL_filter.cc
|
||||
# tracking_2nd_PLL_filter.cc
|
||||
# tracking_discriminators.cc
|
||||
# tracking_FLL_PLL_filter.cc
|
||||
# tracking_loop_filter.cc
|
||||
)
|
||||
|
||||
#if(ENABLE_FPGA)
|
||||
# SET(ACQUISITION_LIB_SOURCES ${ACQUISITION_LIB_SOURCES} fpga_acquisition_8sc.cc)
|
||||
#endif(ENABLE_FPGA)
|
||||
|
||||
include_directories(
|
||||
$(CMAKE_CURRENT_SOURCE_DIR)
|
||||
${CMAKE_SOURCE_DIR}/src/core/system_parameters
|
||||
${CMAKE_SOURCE_DIR}/src/core/interfaces
|
||||
${CMAKE_SOURCE_DIR}/src/core/receiver
|
||||
${VOLK_INCLUDE_DIRS}
|
||||
${GLOG_INCLUDE_DIRS}
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
${OPT_TRACKING_INCLUDES}
|
||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
if(ENABLE_GENERIC_ARCH)
|
||||
add_definitions( -DGENERIC_ARCH=1 )
|
||||
endif(ENABLE_GENERIC_ARCH)
|
||||
|
||||
if (SSE3_AVAILABLE)
|
||||
add_definitions( -DHAVE_SSE3=1 )
|
||||
endif(SSE3_AVAILABLE)
|
||||
|
||||
|
||||
#file(GLOB TRACKING_LIB_HEADERS "*.h")
|
||||
file(GLOB ACQUISITION_LIB_HEADERS "*.h")
|
||||
#list(SORT TRACKING_LIB_HEADERS)
|
||||
list(SORT ACQUISITION_LIB_HEADERS)
|
||||
#add_library(tracking_lib ${TRACKING_LIB_SOURCES} ${TRACKING_LIB_HEADERS})
|
||||
add_library(acquisition_lib ${ACQUISITION_LIB_SOURCES} ${ACQUISITION_LIB_HEADERS})
|
||||
#source_group(Headers FILES ${TRACKING_LIB_HEADERS})
|
||||
source_group(Headers FILES ${ACQUISITION_LIB_HEADERS})
|
||||
#target_link_libraries(tracking_lib ${OPT_TRACKING_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
|
||||
target_link_libraries(acquisition_lib ${OPT_ACQUISITION_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
|
||||
if(VOLK_GNSSSDR_FOUND)
|
||||
# add_dependencies(tracking_lib glog-${glog_RELEASE})
|
||||
add_dependencies(acquisition_lib glog-${glog_RELEASE})
|
||||
else(VOLK_GNSSSDR_FOUND)
|
||||
# add_dependencies(tracking_lib glog-${glog_RELEASE} volk_gnsssdr_module)
|
||||
add_dependencies(acquisition_lib glog-${glog_RELEASE} volk_gnsssdr_module)
|
||||
endif()
|
||||
|
336
src/algorithms/acquisition/libs/gps_fpga_acquisition_8sc.cc
Normal file
336
src/algorithms/acquisition/libs/gps_fpga_acquisition_8sc.cc
Normal file
@ -0,0 +1,336 @@
|
||||
/*!
|
||||
* \file gps_fpga_acquisition_8sc.cc
|
||||
* \brief High optimized FPGA vector correlator class
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* Class that controls and executes a high optimized vector correlator
|
||||
* class in the FPGA
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_fpga_acquisition_8sc.h"
|
||||
#include <cmath>
|
||||
|
||||
// FPGA stuff
|
||||
#include <new>
|
||||
|
||||
// libraries used by DMA test code and GIPO test code
|
||||
#include <stdio.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <errno.h>
|
||||
|
||||
// libraries used by DMA test code
|
||||
#include <sys/stat.h>
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <assert.h>
|
||||
|
||||
// libraries used by GPIO test code
|
||||
#include <stdlib.h>
|
||||
#include <signal.h>
|
||||
#include <sys/mman.h>
|
||||
|
||||
// logging
|
||||
#include <glog/logging.h>
|
||||
|
||||
#include "GPS_L1_CA.h"
|
||||
|
||||
#define PAGE_SIZE 0x10000
|
||||
//#define MAX_LENGTH_DEVICEIO_NAME 50
|
||||
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20
|
||||
#define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION
|
||||
#define pwrtwo(x) (1 << (x))
|
||||
#define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS
|
||||
#define PHASE_CARR_NBITS 32
|
||||
#define PHASE_CARR_NBITS_INT 1
|
||||
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
|
||||
|
||||
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
|
||||
|
||||
|
||||
bool gps_fpga_acquisition_8sc::init(unsigned int fft_size, unsigned int nsamples_total, long freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue)
|
||||
{
|
||||
float phase_step_rad_fpga;
|
||||
float phase_step_rad_fpga_real;
|
||||
|
||||
d_phase_step_rad_vector = new float[num_doppler_bins];
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < num_doppler_bins; doppler_index++)
|
||||
{
|
||||
int doppler = -static_cast<int>(doppler_max) + doppler_step * doppler_index;
|
||||
float phase_step_rad = GPS_TWO_PI * (freq + doppler) / static_cast<float>(fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
|
||||
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
|
||||
phase_step_rad_fpga = phase_step_rad/(GPS_TWO_PI/2);
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
if (phase_step_rad_fpga == 1.0)
|
||||
{
|
||||
phase_step_rad_fpga = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
d_phase_step_rad_vector[doppler_index] = phase_step_rad_fpga;
|
||||
|
||||
}
|
||||
|
||||
// sanity check : check test register
|
||||
unsigned writeval = 0x55AA;
|
||||
unsigned readval;
|
||||
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(writeval);
|
||||
if (writeval != readval)
|
||||
{
|
||||
printf("test register fail\n");
|
||||
LOG(WARNING) << "Acquisition test register sanity check failed";
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("test register success\n");
|
||||
LOG(INFO) << "Acquisition test register sanity check success !";
|
||||
}
|
||||
|
||||
d_nsamples = fft_size;
|
||||
d_nsamples_total = nsamples_total;
|
||||
|
||||
gps_fpga_acquisition_8sc::configure_acquisition();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool gps_fpga_acquisition_8sc::set_local_code(gr_complex* fft_codes)
|
||||
{
|
||||
int i;
|
||||
float val;
|
||||
float max = 0;
|
||||
d_fft_codes = new lv_16sc_t[d_nsamples_total];
|
||||
|
||||
for (i=0;i<d_nsamples_total;i++)
|
||||
{
|
||||
if(abs(fft_codes[i].real()) > max)
|
||||
{
|
||||
max = abs(fft_codes[i].real());
|
||||
}
|
||||
if(abs(fft_codes[i].imag()) > max)
|
||||
{
|
||||
max = abs(fft_codes[i].imag());
|
||||
}
|
||||
}
|
||||
|
||||
for (i=0;i<d_nsamples_total;i++)
|
||||
{
|
||||
d_fft_codes[i] = lv_16sc_t((int) (fft_codes[i].real()*(pow(2,7) - 1)/max), (int) (fft_codes[i].imag()*(pow(2,7) - 1)/max));
|
||||
}
|
||||
|
||||
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(d_fft_codes);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc()
|
||||
{
|
||||
|
||||
|
||||
if ((d_fd = open(d_device_io_name, O_RDWR | O_SYNC )) == -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot open deviceio" << d_device_io_name;
|
||||
}
|
||||
d_map_base = (volatile unsigned *)mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, d_fd,0);
|
||||
|
||||
if (d_map_base == (void *) -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
gps_fpga_acquisition_8sc::~gps_fpga_acquisition_8sc()
|
||||
{
|
||||
|
||||
if (munmap((void*)d_map_base, PAGE_SIZE) == -1)
|
||||
{
|
||||
printf("Failed to unmap memory uio\n");
|
||||
}
|
||||
|
||||
close(d_fd);
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool gps_fpga_acquisition_8sc::free()
|
||||
{
|
||||
if (d_fft_codes != nullptr)
|
||||
{
|
||||
delete [] d_fft_codes;
|
||||
d_fft_codes = nullptr;
|
||||
}
|
||||
if (d_phase_step_rad_vector != nullptr)
|
||||
{
|
||||
delete [] d_phase_step_rad_vector;
|
||||
d_phase_step_rad_vector = nullptr;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(unsigned writeval)
|
||||
{
|
||||
|
||||
unsigned readval;
|
||||
// write value to test register
|
||||
d_map_base[15] = writeval;
|
||||
// read value from test register
|
||||
readval = d_map_base[15];
|
||||
// return read value
|
||||
return readval;
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
|
||||
{
|
||||
short int local_code;
|
||||
unsigned int k, tmp, tmp2;
|
||||
|
||||
// clear memory address counter
|
||||
d_map_base[4] = 0x10000000;
|
||||
for (k = 0; k < d_nsamples_total; k++)
|
||||
{
|
||||
tmp = fft_local_code[k].real();
|
||||
tmp2 = fft_local_code[k].imag();
|
||||
local_code = (tmp & 0xFF) | ((tmp2*256) & 0xFF00); // put together the real part and the imaginary part
|
||||
if (k < 20)
|
||||
{
|
||||
printf("tmp tmp2 local_code = %d %d %d\n", tmp, tmp2, local_code);
|
||||
}
|
||||
d_map_base[4] = 0x0C000000 | (local_code & 0xFFFF);
|
||||
}
|
||||
|
||||
FILE *f;
|
||||
f = fopen("captured_local_code_dec.txt", "w");
|
||||
if (!f)
|
||||
{
|
||||
printf("Unable to open file!");
|
||||
}
|
||||
for(k=0;k< d_nsamples_total;k++)
|
||||
{
|
||||
fprintf(f,"%d\n",fft_local_code[k].real()); // real part
|
||||
fprintf(f,"%d\n",fft_local_code[k].imag()); // real part
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::run_acquisition(void)
|
||||
{
|
||||
// enable interrupts
|
||||
int reenable = 1;
|
||||
write(d_fd, (void *)&reenable, sizeof(int));
|
||||
|
||||
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
|
||||
|
||||
int irq_count;
|
||||
ssize_t nb;
|
||||
// wait for interrupt
|
||||
nb=read(d_fd, &irq_count, sizeof(irq_count));
|
||||
if (nb != sizeof(irq_count))
|
||||
{
|
||||
printf("Tracking_module Read failed to retrive 4 bytes!\n");
|
||||
printf("Tracking_module Interrupt number %d\n", irq_count);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::configure_acquisition()
|
||||
{
|
||||
|
||||
d_map_base[0] = d_select_queue;
|
||||
d_map_base[1] = d_nsamples_total;
|
||||
d_map_base[2] = d_nsamples;
|
||||
|
||||
printf("nsamples = %d\n", d_nsamples);
|
||||
printf("nsamples_total = %d\n", d_nsamples_total);
|
||||
printf("d_select_queue = %d\n", d_select_queue);
|
||||
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::set_phase_step(unsigned int doppler_index)
|
||||
{
|
||||
float phase_step_rad_real;
|
||||
float phase_step_rad_int_temp;
|
||||
int32_t phase_step_rad_int;
|
||||
|
||||
phase_step_rad_real = d_phase_step_rad_vector[doppler_index];
|
||||
|
||||
phase_step_rad_int_temp = phase_step_rad_real*4; // * 2^2
|
||||
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp*(536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
|
||||
d_map_base[3] = phase_step_rad_int;
|
||||
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum)
|
||||
{
|
||||
unsigned readval = 0;
|
||||
readval = d_map_base[0];
|
||||
printf("RESULT : result valid = %d\n", readval);
|
||||
readval = d_map_base[1];
|
||||
*initial_sample = readval;
|
||||
printf("RESULT : initial sample = %d\n", *initial_sample);
|
||||
readval = d_map_base[2];
|
||||
*max_magnitude = (float) readval;
|
||||
printf("RESULT : max_magnitude = %f\n", *max_magnitude);
|
||||
readval = d_map_base[4];
|
||||
*power_sum = (float) readval;
|
||||
printf("RESULT : power sum = %f\n", *power_sum);
|
||||
readval = d_map_base[3];
|
||||
*max_index = readval;
|
||||
printf("RESULT : max_index = %d\n", *max_index); // to avoid result_read line to stay high
|
||||
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::block_samples()
|
||||
{
|
||||
d_map_base[14] = 1; // block the samples
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::unblock_samples()
|
||||
{
|
||||
d_map_base[14] = 0; // unblock the samples
|
||||
}
|
||||
|
||||
|
108
src/algorithms/acquisition/libs/gps_fpga_acquisition_8sc.h
Normal file
108
src/algorithms/acquisition/libs/gps_fpga_acquisition_8sc.h
Normal file
@ -0,0 +1,108 @@
|
||||
/*!
|
||||
* \file fpga_acquisition_8sc.h
|
||||
* \brief High optimized FPGA vector correlator class for lv_16sc_t (short int complex)
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
* <li> Javier Arribas, 2016. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Class that controls and executes a high optimized vector correlator
|
||||
* class in the FPGA
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_FPGA_ACQUISITION_8SC_H_
|
||||
#define GNSS_SDR_FPGA_ACQUISITION_8SC_H_
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
#include <gnuradio/block.h>
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Class that implements carrier wipe-off and correlators.
|
||||
*/
|
||||
class gps_fpga_acquisition_8sc
|
||||
{
|
||||
public:
|
||||
gps_fpga_acquisition_8sc();
|
||||
~gps_fpga_acquisition_8sc();
|
||||
//bool init(int max_signal_length_samples, int n_correlators);
|
||||
bool init(unsigned int fft_size, unsigned int nsamples_total, long d_freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue);
|
||||
bool set_local_code(gr_complex* fft_codes); //int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
|
||||
bool free();
|
||||
void run_acquisition(void);
|
||||
void set_phase_step(unsigned int doppler_index);
|
||||
void read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum);
|
||||
void block_samples();
|
||||
void unblock_samples();
|
||||
private:
|
||||
const lv_16sc_t *d_local_code_in;
|
||||
lv_16sc_t *d_corr_out;
|
||||
float *d_shifts_chips;
|
||||
int d_code_length_chips;
|
||||
int d_n_correlators;
|
||||
|
||||
// data related to the hardware module and the driver
|
||||
char d_device_io_name[11] = "/dev/uio13"; // driver io name
|
||||
int d_fd; // driver descriptor
|
||||
volatile unsigned *d_map_base; // driver memory map
|
||||
|
||||
// configuration data received from the interface
|
||||
lv_16sc_t *d_fft_codes = nullptr;
|
||||
float *d_phase_step_rad_vector = nullptr;
|
||||
|
||||
unsigned int d_nsamples_total; // total number of samples in the fft including padding
|
||||
unsigned int d_nsamples; // number of samples not including padding
|
||||
unsigned int d_select_queue =0; // queue selection
|
||||
|
||||
// unsigned int d_channel; // channel number
|
||||
// unsigned d_ncorrelators; // number of correlators
|
||||
// unsigned d_correlator_length_samples;
|
||||
// float d_rem_code_phase_chips;
|
||||
// float d_code_phase_step_chips;
|
||||
// float d_rem_carrier_phase_in_rad;
|
||||
// float d_phase_step_rad;
|
||||
|
||||
// configuration data computed in the format that the FPGA expects
|
||||
// unsigned *d_initial_index;
|
||||
// unsigned *d_initial_interp_counter;
|
||||
// unsigned d_code_phase_step_chips_num;
|
||||
// int d_rem_carr_phase_rad_int;
|
||||
// int d_phase_step_rad_int;
|
||||
// unsigned d_initial_sample_counter;
|
||||
|
||||
// FPGA private functions
|
||||
unsigned fpga_acquisition_test_register(unsigned writeval);
|
||||
void fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[]);
|
||||
void configure_acquisition();
|
||||
|
||||
|
||||
//void fpga_acquisition_8sc::run_acquisition(void);
|
||||
};
|
||||
|
||||
|
||||
#endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */
|
@ -0,0 +1,392 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_acquisition_test_fpga.cc
|
||||
* \brief This class implements an acquisition test for
|
||||
* GpsL1CaPcpsAcquisitionFpga class based on some input parameters.
|
||||
* \author Marc Majoral, 2017. mmajoral(at)cttc.cat
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <boost/make_shared.hpp>
|
||||
#include <boost/thread.hpp>
|
||||
#include <boost/chrono.hpp>
|
||||
//#include <stdio.h>
|
||||
#include <gnuradio/top_block.h>
|
||||
#include <gnuradio/blocks/file_source.h>
|
||||
#include <gnuradio/analog/sig_source_waveform.h>
|
||||
#include <gnuradio/analog/sig_source_c.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/null_sink.h>
|
||||
#include <gnuradio/blocks/throttle.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include "gnss_block_factory.h"
|
||||
#include "gnss_block_interface.h"
|
||||
#include "in_memory_configuration.h"
|
||||
#include "gnss_sdr_valve.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_l1_ca_pcps_acquisition_fpga.h"
|
||||
|
||||
#include <unistd.h>
|
||||
|
||||
#define DMA_ACQ_TRANSFER_SIZE 4000
|
||||
#define RX_SIGNAL_MAX_VALUE 127 // 2^7 - 1 for 8-bit signed values
|
||||
#define NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE 50 // number of times we cycle through the file containing the received samples
|
||||
#define ONE_SECOND 1000000 // one second in microseconds
|
||||
#define FLOAT_SIZE (sizeof(float)) // size of the float variable in characters
|
||||
|
||||
|
||||
// thread that reads the file containing the received samples, scales the samples to the dynamic range of the fixed point values, sends
|
||||
// the samples to the DMA and finally it stops the top block
|
||||
void thread_acquisition_send_rx_samples(gr::top_block_sptr top_block, const char * file_name)
|
||||
{
|
||||
|
||||
FILE *ptr_myfile; // file descriptor
|
||||
int fileLen; // length of the file containing the received samples
|
||||
int tx_fd; // DMA descriptor
|
||||
|
||||
// sleep for 1 second to give some time to GNSS-SDR to activate the acquisition module.
|
||||
// the acquisition module does not block the RX buffer before activation.
|
||||
// If this process starts sending samples straight ahead without waiting it could occur that
|
||||
// the first samples are lost. This is normal behaviour in a real receiver but this is not what
|
||||
// we want for the test
|
||||
usleep(ONE_SECOND);
|
||||
|
||||
char *buffer_temp; // temporary buffer to convert from binary char to float and from float to char
|
||||
signed char *buffer_char; // temporary buffer to store the samples to be sent to the DMA
|
||||
buffer_temp = (char *)malloc(FLOAT_SIZE); // allocate space for the temporary buffer
|
||||
if (!buffer_temp)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
|
||||
ptr_myfile = fopen(file_name,"rb"); // file containing the received signal
|
||||
if (!ptr_myfile)
|
||||
{
|
||||
printf("Unable to open file!");
|
||||
}
|
||||
|
||||
// determine the length of the file that contains the received signal
|
||||
fseek(ptr_myfile, 0, SEEK_END);
|
||||
fileLen = ftell(ptr_myfile);
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
|
||||
// first step: check for the maximum value of the received signal
|
||||
|
||||
float max = 0;
|
||||
float *pointer_float;
|
||||
pointer_float = (float *) &buffer_temp[0];
|
||||
for (int k=0;k<fileLen;k=k+FLOAT_SIZE)
|
||||
{
|
||||
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
|
||||
|
||||
if (fabs(pointer_float[0]) > max)
|
||||
{
|
||||
max = (pointer_float[0]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// go back to the beginning of the file containing the received samples
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
|
||||
// allocate memory for the samples to be transferred to the DMA
|
||||
|
||||
buffer_char = (signed char *)malloc(DMA_ACQ_TRANSFER_SIZE);
|
||||
if (!buffer_char)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
|
||||
// open the DMA descriptor
|
||||
tx_fd = open("/dev/loop_tx", O_WRONLY);
|
||||
if ( tx_fd < 0 )
|
||||
{
|
||||
printf("can't open loop device\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
// cycle through the file containing the received samples
|
||||
|
||||
for (int k=0;k<NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE;k++)
|
||||
{
|
||||
|
||||
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
|
||||
int transfer_size;
|
||||
int num_transferred_samples = 0;
|
||||
while (num_transferred_samples< fileLen/FLOAT_SIZE)
|
||||
{
|
||||
if (((fileLen/FLOAT_SIZE) - num_transferred_samples) > DMA_ACQ_TRANSFER_SIZE)
|
||||
{
|
||||
|
||||
|
||||
transfer_size = DMA_ACQ_TRANSFER_SIZE;
|
||||
num_transferred_samples = num_transferred_samples + DMA_ACQ_TRANSFER_SIZE;
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
transfer_size = fileLen/FLOAT_SIZE - num_transferred_samples;
|
||||
num_transferred_samples = fileLen/FLOAT_SIZE;
|
||||
}
|
||||
|
||||
|
||||
for (int t=0;t<transfer_size;t++)
|
||||
{
|
||||
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
|
||||
|
||||
// specify (float) (int) for a quantization maximizing the dynamic range
|
||||
buffer_char[t] = (signed char) ((pointer_float[0]*(RX_SIGNAL_MAX_VALUE - 1))/max);
|
||||
|
||||
}
|
||||
|
||||
//send_acquisition_gps_input_samples(buffer_char, transfer_size, tx_fd);
|
||||
assert( transfer_size == write(tx_fd, &buffer_char[0], transfer_size) );
|
||||
}
|
||||
|
||||
}
|
||||
fclose(ptr_myfile);
|
||||
free(buffer_temp);
|
||||
free(buffer_char);
|
||||
close(tx_fd);
|
||||
|
||||
// when all the samples are sent stop the top block
|
||||
|
||||
top_block->stop();
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
|
||||
class GpsL1CaPcpsAcquisitionTestFpga_msg_rx;
|
||||
|
||||
typedef boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr;
|
||||
|
||||
GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
|
||||
|
||||
class GpsL1CaPcpsAcquisitionTestFpga_msg_rx : public gr::block
|
||||
{
|
||||
private:
|
||||
friend GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
|
||||
void msg_handler_events(pmt::pmt_t msg);
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx();
|
||||
public:
|
||||
int rx_message;
|
||||
~GpsL1CaPcpsAcquisitionTestFpga_msg_rx(); //!< Default destructor
|
||||
};
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make()
|
||||
{
|
||||
return GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr(new GpsL1CaPcpsAcquisitionTestFpga_msg_rx());
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
|
||||
{
|
||||
try
|
||||
{
|
||||
long int message = pmt::to_long(msg);
|
||||
rx_message = message;
|
||||
}
|
||||
catch(boost::bad_any_cast& e)
|
||||
{
|
||||
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
|
||||
rx_message = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::GpsL1CaPcpsAcquisitionTestFpga_msg_rx() :
|
||||
gr::block("GpsL1CaPcpsAcquisitionTestFpga_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
this->message_port_register_in(pmt::mp("events"));
|
||||
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events, this, _1));
|
||||
rx_message = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::~GpsL1CaPcpsAcquisitionTestFpga_msg_rx()
|
||||
{}
|
||||
|
||||
|
||||
// ###########################################################
|
||||
|
||||
class GpsL1CaPcpsAcquisitionTestFpga: public ::testing::Test
|
||||
{
|
||||
protected:
|
||||
GpsL1CaPcpsAcquisitionTestFpga()
|
||||
{
|
||||
factory = std::make_shared<GNSSBlockFactory>();
|
||||
config = std::make_shared<InMemoryConfiguration>();
|
||||
item_size = sizeof(gr_complex);
|
||||
gnss_synchro = Gnss_Synchro();
|
||||
}
|
||||
|
||||
~GpsL1CaPcpsAcquisitionTestFpga()
|
||||
{}
|
||||
|
||||
void init();
|
||||
|
||||
gr::top_block_sptr top_block;
|
||||
std::shared_ptr<GNSSBlockFactory> factory;
|
||||
std::shared_ptr<InMemoryConfiguration> config;
|
||||
Gnss_Synchro gnss_synchro;
|
||||
size_t item_size;
|
||||
};
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionTestFpga::init()
|
||||
{
|
||||
gnss_synchro.Channel_ID = 0;
|
||||
gnss_synchro.System = 'G';
|
||||
std::string signal = "1C";
|
||||
signal.copy(gnss_synchro.Signal, 2, 0);
|
||||
gnss_synchro.PRN = 1;
|
||||
config->set_property("GNSS-SDR.internal_fs_hz", "4000000");
|
||||
//config->set_property("Acquisition.item_type", "gr_complex");
|
||||
config->set_property("Acquisition.item_type", "cshort");
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms", "1");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.001");
|
||||
config->set_property("Acquisition.doppler_max", "5000");
|
||||
config->set_property("Acquisition.doppler_step", "500");
|
||||
config->set_property("Acquisition.repeat_satellite", "false");
|
||||
config->set_property("Acquisition.pfa", "0.0");
|
||||
}
|
||||
|
||||
|
||||
|
||||
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, Instantiate)
|
||||
{
|
||||
init();
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
|
||||
{
|
||||
struct timeval tv;
|
||||
long long int begin = 0;
|
||||
long long int end = 0;
|
||||
top_block = gr::make_top_block("Acquisition test");
|
||||
|
||||
double expected_delay_samples = 524;
|
||||
double expected_doppler_hz = 1680;
|
||||
init();
|
||||
|
||||
|
||||
|
||||
|
||||
std::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
|
||||
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel(1);
|
||||
}) << "Failure setting channel." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_gnss_synchro(&gnss_synchro);
|
||||
}) << "Failure setting gnss_synchro." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_threshold(0.1);
|
||||
}) << "Failure setting threshold." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_max(10000);
|
||||
}) << "Failure setting doppler_max." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_step(250);
|
||||
}) << "Failure setting doppler_step." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->connect(top_block);
|
||||
}) << "Failure connecting acquisition to the top_block." << std::endl;
|
||||
|
||||
std::string file = "./GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
|
||||
const char * file_name = file.c_str();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
//std::string path = std::string(TEST_PATH);
|
||||
//std::string file = path + "signal_samples/GSoC_CTTC_capture_2012_07_26_4Msps_4ms.dat";
|
||||
//std::string file = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
|
||||
|
||||
// for the unit test use dummy blocks to make the flowgraph work and allow the acquisition message to be sent.
|
||||
// in the actual system there is a flowchart running in parallel so this is not needed
|
||||
|
||||
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
|
||||
gr::blocks::null_sink::sptr null_sink = gr::blocks::null_sink::make(sizeof(gr_complex));
|
||||
gr::blocks::throttle::sptr throttle_block = gr::blocks::throttle::make(sizeof(gr_complex),1000);
|
||||
|
||||
top_block->connect(file_source, 0, throttle_block, 0);
|
||||
top_block->connect(throttle_block, 0, null_sink, 0);
|
||||
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
acquisition->set_state(1); // Ensure that acquisition starts at the first state
|
||||
acquisition->init();
|
||||
top_block->start(); // Start the top block
|
||||
|
||||
// start thread that sends the DMA samples to the FPGA
|
||||
boost::thread t3{thread_acquisition_send_rx_samples, top_block, file_name};
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
acquisition->reset(); // launch the tracking process
|
||||
top_block->wait();
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
}) << "Failure running the top_block." << std::endl;
|
||||
|
||||
t3.join();
|
||||
|
||||
|
||||
unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples;
|
||||
std::cout << "Acquired " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
|
||||
|
||||
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
|
||||
|
||||
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
|
||||
float delay_error_chips = (float)(delay_error_samples * 1023 / 4000);
|
||||
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
|
||||
|
||||
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
|
||||
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user