2012-07-12 21:17:37 +00:00
|
|
|
/*!
|
2020-11-07 21:43:19 +00:00
|
|
|
* \file gps_sdr_signal_replica.cc
|
|
|
|
* \brief This file implements functions for GPS L1 C/A signal replica
|
|
|
|
* generation
|
2012-07-12 21:17:37 +00:00
|
|
|
* \author Javier Arribas, 2011. jarribas(at)cttc.es
|
|
|
|
*
|
|
|
|
*
|
2020-07-28 14:57:15 +00:00
|
|
|
* -----------------------------------------------------------------------------
|
2012-07-12 21:17:37 +00:00
|
|
|
*
|
2020-12-30 12:35:06 +00:00
|
|
|
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
2012-07-12 21:17:37 +00:00
|
|
|
* This file is part of GNSS-SDR.
|
|
|
|
*
|
2020-12-30 12:35:06 +00:00
|
|
|
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
|
2020-02-08 00:20:02 +00:00
|
|
|
* SPDX-License-Identifier: GPL-3.0-or-later
|
2012-07-12 21:17:37 +00:00
|
|
|
*
|
2020-07-28 14:57:15 +00:00
|
|
|
* -----------------------------------------------------------------------------
|
2012-07-12 21:17:37 +00:00
|
|
|
*/
|
|
|
|
|
2020-11-07 21:43:19 +00:00
|
|
|
#include "gps_sdr_signal_replica.h"
|
2019-07-14 12:09:12 +00:00
|
|
|
#include <array>
|
2019-07-15 13:13:18 +00:00
|
|
|
#include <bitset>
|
2011-10-01 18:45:20 +00:00
|
|
|
|
2020-05-07 10:13:49 +00:00
|
|
|
const auto AUX_CEIL = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
|
2012-07-12 21:17:37 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
void gps_l1_ca_code_gen_int(own::span<int32_t> dest, int32_t prn, uint32_t chip_shift)
|
2012-01-16 18:27:31 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
constexpr uint32_t code_length = 1023;
|
|
|
|
std::bitset<code_length> G1{};
|
|
|
|
std::bitset<code_length> G2{};
|
2020-07-11 09:13:53 +00:00
|
|
|
auto G1_register = std::bitset<10>{}.set(); // All true
|
|
|
|
auto G2_register = std::bitset<10>{}.set(); // All true
|
2019-08-12 22:19:31 +00:00
|
|
|
uint32_t lcv;
|
|
|
|
uint32_t lcv2;
|
2018-08-13 08:18:05 +00:00
|
|
|
uint32_t delay;
|
|
|
|
int32_t prn_idx;
|
2020-07-11 09:13:53 +00:00
|
|
|
bool feedback1;
|
|
|
|
bool feedback2;
|
|
|
|
bool aux;
|
2012-10-28 12:38:11 +00:00
|
|
|
|
2019-07-14 12:09:12 +00:00
|
|
|
// G2 Delays as defined in GPS-ISD-200D
|
|
|
|
const std::array<int32_t, 51> delays = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472,
|
2018-03-03 01:03:39 +00:00
|
|
|
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/,
|
|
|
|
145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762,
|
|
|
|
355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/};
|
2013-07-20 07:58:59 +00:00
|
|
|
|
|
|
|
// compute delay array index for given PRN number
|
2020-12-29 13:47:28 +00:00
|
|
|
if (120 <= prn && prn <= 138)
|
2016-05-02 21:46:30 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
prn_idx = prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
|
2016-05-02 21:46:30 +00:00
|
|
|
}
|
2013-07-20 07:58:59 +00:00
|
|
|
else
|
2016-05-02 21:46:30 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
prn_idx = prn - 1;
|
2016-05-02 21:46:30 +00:00
|
|
|
}
|
2012-10-28 12:38:11 +00:00
|
|
|
|
2019-07-14 12:09:12 +00:00
|
|
|
// A simple error check
|
2018-03-03 01:03:39 +00:00
|
|
|
if ((prn_idx < 0) || (prn_idx > 51))
|
2019-02-11 20:13:02 +00:00
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
2012-10-28 12:38:11 +00:00
|
|
|
|
2019-07-14 12:09:12 +00:00
|
|
|
// Generate G1 & G2 Register
|
2020-12-29 13:47:28 +00:00
|
|
|
for (lcv = 0; lcv < code_length; lcv++)
|
2012-10-28 12:38:11 +00:00
|
|
|
{
|
|
|
|
G1[lcv] = G1_register[0];
|
|
|
|
G2[lcv] = G2_register[0];
|
2011-10-01 18:45:20 +00:00
|
|
|
|
2019-07-18 17:47:27 +00:00
|
|
|
feedback1 = G1_register[7] xor G1_register[0];
|
2019-07-14 21:34:07 +00:00
|
|
|
feedback2 = G2_register[8] xor G2_register[7] xor G2_register[4] xor G2_register[2] xor G2_register[1] xor G2_register[0];
|
2011-10-01 18:45:20 +00:00
|
|
|
|
2018-03-03 01:03:39 +00:00
|
|
|
for (lcv2 = 0; lcv2 < 9; lcv2++)
|
2012-10-28 12:38:11 +00:00
|
|
|
{
|
|
|
|
G1_register[lcv2] = G1_register[lcv2 + 1];
|
|
|
|
G2_register[lcv2] = G2_register[lcv2 + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
G1_register[9] = feedback1;
|
|
|
|
G2_register[9] = feedback2;
|
|
|
|
}
|
|
|
|
|
2019-07-14 12:09:12 +00:00
|
|
|
// Set the delay
|
2020-12-29 13:47:28 +00:00
|
|
|
delay = code_length - delays[prn_idx];
|
|
|
|
delay += chip_shift;
|
|
|
|
delay %= code_length;
|
2015-05-03 08:50:57 +00:00
|
|
|
|
2019-07-14 12:09:12 +00:00
|
|
|
// Generate PRN from G1 and G2 Registers
|
2020-12-29 13:47:28 +00:00
|
|
|
for (lcv = 0; lcv < code_length; lcv++)
|
2012-10-28 12:38:11 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
aux = G1[(lcv + chip_shift) % code_length] xor G2[delay];
|
2018-03-03 01:03:39 +00:00
|
|
|
if (aux == true)
|
2015-05-03 08:50:57 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[lcv] = 1;
|
2015-05-03 08:50:57 +00:00
|
|
|
}
|
|
|
|
else
|
2012-10-28 12:38:11 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[lcv] = -1;
|
2012-10-28 12:38:11 +00:00
|
|
|
}
|
|
|
|
delay++;
|
2020-12-29 13:47:28 +00:00
|
|
|
delay %= code_length;
|
2012-10-28 12:38:11 +00:00
|
|
|
}
|
2011-10-01 18:45:20 +00:00
|
|
|
}
|
|
|
|
|
2017-09-15 23:14:15 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
void gps_l1_ca_code_gen_float(own::span<float> dest, int32_t prn, uint32_t chip_shift)
|
2017-09-11 14:21:05 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
constexpr uint32_t code_length = 1023;
|
|
|
|
std::array<int32_t, code_length> ca_code_int{};
|
2017-09-11 14:21:05 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift);
|
2017-09-11 14:21:05 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
for (uint32_t ii = 0; ii < code_length; ++ii)
|
2017-09-15 23:14:15 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[ii] = static_cast<float>(ca_code_int[ii]);
|
2017-09-15 23:14:15 +00:00
|
|
|
}
|
2017-09-11 14:21:05 +00:00
|
|
|
}
|
|
|
|
|
2017-09-15 23:14:15 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
void gps_l1_ca_code_gen_complex(own::span<std::complex<float>> dest, int32_t prn, uint32_t chip_shift)
|
2017-09-11 14:21:05 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
constexpr uint32_t code_length = 1023;
|
|
|
|
std::array<int32_t, code_length> ca_code_int{};
|
2017-09-11 14:21:05 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift);
|
2017-09-11 14:21:05 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
for (uint32_t ii = 0; ii < code_length; ++ii)
|
2017-09-15 23:14:15 +00:00
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[ii] = std::complex<float>(0.0F, static_cast<float>(ca_code_int[ii]));
|
2017-09-15 23:14:15 +00:00
|
|
|
}
|
2017-09-11 14:21:05 +00:00
|
|
|
}
|
2011-10-01 18:45:20 +00:00
|
|
|
|
2015-05-03 08:50:57 +00:00
|
|
|
|
2012-10-28 12:38:11 +00:00
|
|
|
/*
|
2013-01-28 23:50:09 +00:00
|
|
|
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
|
2018-07-19 14:26:51 +00:00
|
|
|
* NOTICE: the number of samples is rounded towards zero (integer truncation)
|
2011-10-01 18:45:20 +00:00
|
|
|
*/
|
2020-12-29 13:47:28 +00:00
|
|
|
void gps_l1_ca_code_gen_complex_sampled(own::span<std::complex<float>> dest, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift)
|
2011-10-01 18:45:20 +00:00
|
|
|
{
|
2012-10-28 12:38:11 +00:00
|
|
|
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
|
2020-12-29 13:47:28 +00:00
|
|
|
constexpr int32_t codeFreqBasis = 1023000; // chips per second
|
|
|
|
constexpr int32_t codeLength = 1023;
|
|
|
|
constexpr float tc = 1.0F / static_cast<float>(codeFreqBasis); // C/A chip period in sec
|
|
|
|
|
|
|
|
const auto samplesPerCode = static_cast<int32_t>(static_cast<double>(sampling_freq) / (static_cast<double>(codeFreqBasis) / static_cast<double>(codeLength)));
|
|
|
|
const float ts = 1.0F / static_cast<float>(sampling_freq); // Sampling period in sec
|
|
|
|
std::array<std::complex<float>, 1023> code_aux{};
|
|
|
|
int32_t codeValueIndex;
|
2015-05-05 11:00:24 +00:00
|
|
|
float aux;
|
2012-01-23 00:52:05 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
gps_l1_ca_code_gen_complex(code_aux, prn, chip_shift); // generate C/A code 1 sample per chip
|
2012-10-28 12:38:11 +00:00
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
for (int32_t i = 0; i < samplesPerCode; i++)
|
2012-01-23 00:52:05 +00:00
|
|
|
{
|
2019-07-28 10:01:11 +00:00
|
|
|
// === Digitizing ==================================================
|
2012-01-23 00:52:05 +00:00
|
|
|
|
2019-07-28 10:01:11 +00:00
|
|
|
// --- Make index array to read C/A code values --------------------
|
2012-01-23 00:52:05 +00:00
|
|
|
// The length of the index array depends on the sampling frequency -
|
|
|
|
// number of samples per millisecond (because one C/A code period is one
|
|
|
|
// millisecond).
|
|
|
|
|
2020-12-29 13:47:28 +00:00
|
|
|
aux = (ts * (static_cast<float>(i) + 1)) / tc;
|
|
|
|
codeValueIndex = AUX_CEIL(aux) - 1;
|
2012-01-23 00:52:05 +00:00
|
|
|
|
2019-07-28 10:01:11 +00:00
|
|
|
// --- Make the digitized version of the C/A code -------------------
|
2012-01-23 00:52:05 +00:00
|
|
|
// The "upsampled" code is made by selecting values form the CA code
|
|
|
|
// chip array (caCode) for the time instances of each sample.
|
2020-12-29 13:47:28 +00:00
|
|
|
if (i == samplesPerCode - 1)
|
2012-01-23 00:52:05 +00:00
|
|
|
{
|
2019-07-28 10:01:11 +00:00
|
|
|
// --- Correct the last index (due to number rounding issues)
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[i] = code_aux[codeLength - 1];
|
2012-01-23 00:52:05 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2020-12-29 13:47:28 +00:00
|
|
|
dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample
|
2012-01-23 00:52:05 +00:00
|
|
|
}
|
|
|
|
}
|
2011-10-01 18:45:20 +00:00
|
|
|
}
|