mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 04:00:34 +00:00
Added ability to generate real valued codes
Only done for GPS L1 C/A and Galileo E1 OS for now. Also added a cpu_multicorrelator_real_codes class that performs code correlation using real-valued local codes
This commit is contained in:
parent
676c1506da
commit
e87522880e
@ -73,7 +73,7 @@ void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn)
|
||||
|
||||
|
||||
|
||||
void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn, unsigned int _length_out)
|
||||
void galileo_e1_sinboc_11_gen_int(int* _dest, int* _prn, unsigned int _length_out)
|
||||
{
|
||||
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
unsigned int _period = static_cast<unsigned int>( _length_out / _length_in );
|
||||
@ -81,18 +81,18 @@ void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn, unsigned in
|
||||
{
|
||||
for (unsigned int j = 0; j < (_period / 2); j++)
|
||||
{
|
||||
_dest[i * _period + j] = std::complex<float>(static_cast<float>(_prn[i]), 0.0);
|
||||
_dest[i * _period + j] = _prn[i];
|
||||
}
|
||||
for (unsigned int j = (_period / 2); j < _period; j++)
|
||||
{
|
||||
_dest[i * _period + j] = std::complex<float>(static_cast<float>(- _prn[i]), 0.0);
|
||||
_dest[i * _period + j] = - _prn[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn, unsigned int _length_out)
|
||||
void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, unsigned int _length_out)
|
||||
{
|
||||
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
unsigned int _period = static_cast<unsigned int>(_length_out / _length_in);
|
||||
@ -101,42 +101,44 @@ void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn, unsigned in
|
||||
{
|
||||
for (unsigned int j = 0; j < _period; j += 2)
|
||||
{
|
||||
_dest[i * _period + j] = std::complex<float>(static_cast<float>(_prn[i]), 0.0);
|
||||
_dest[i * _period + j] = _prn[i];
|
||||
}
|
||||
for (unsigned int j = 1; j < _period; j += 2)
|
||||
{
|
||||
_dest[i * _period + j] = std::complex<float>(static_cast<float>(- _prn[i]), 0.0);
|
||||
_dest[i * _period + j] = - _prn[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
|
||||
void galileo_e1_gen_float(float* _dest, int* _prn, char _Signal[3])
|
||||
{
|
||||
std::string _galileo_signal = _Signal;
|
||||
const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
const float alpha = sqrt(10.0 / 11.0);
|
||||
const float beta = sqrt(1.0 / 11.0);
|
||||
|
||||
std::complex<float> sinboc_11[12 * 4092]; // _codeLength not accepted by Clang
|
||||
std::complex<float> sinboc_61[12 * 4092];
|
||||
int sinboc_11[12 * 4092]; // _codeLength not accepted by Clang
|
||||
int sinboc_61[12 * 4092];
|
||||
|
||||
galileo_e1_sinboc_11_gen(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip
|
||||
galileo_e1_sinboc_61_gen(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip
|
||||
galileo_e1_sinboc_11_gen_int(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip
|
||||
galileo_e1_sinboc_61_gen_int(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip
|
||||
|
||||
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
|
||||
{
|
||||
for (unsigned int i = 0; i < _codeLength; i++)
|
||||
{
|
||||
_dest[i] = alpha * sinboc_11[i] + beta * sinboc_61[i];
|
||||
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) +
|
||||
beta * static_cast<float>(sinboc_61[i]);
|
||||
}
|
||||
}
|
||||
else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2)
|
||||
{
|
||||
for (unsigned int i = 0; i < _codeLength; i++)
|
||||
{
|
||||
_dest[i] = alpha * sinboc_11[i] - beta * sinboc_61[i];
|
||||
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) -
|
||||
beta * static_cast<float>(sinboc_61[i]);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -144,8 +146,7 @@ void galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
|
||||
}
|
||||
|
||||
|
||||
|
||||
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
|
||||
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift,
|
||||
bool _secondary_flag)
|
||||
{
|
||||
@ -164,23 +165,29 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
|
||||
|
||||
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
|
||||
|
||||
std::complex<float>* _signal_E1;
|
||||
float* _signal_E1;
|
||||
|
||||
_codeLength = _samplesPerChip * Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
_signal_E1 = new std::complex<float>[_codeLength];
|
||||
_signal_E1 = new float[_codeLength];
|
||||
|
||||
if (_cboc == true)
|
||||
{
|
||||
galileo_e1_gen(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
|
||||
galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
|
||||
}
|
||||
else
|
||||
{
|
||||
galileo_e1_sinboc_11_gen(_signal_E1, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip
|
||||
int _signal_E1_int[_codeLength];
|
||||
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip
|
||||
|
||||
for( unsigned int ii = 0; ii < _codeLength; ++ii )
|
||||
{
|
||||
_signal_E1[ii] = static_cast< float >( _signal_E1_int[ii] );
|
||||
}
|
||||
}
|
||||
|
||||
if (_fs != _samplesPerChip * _codeFreqBasis)
|
||||
{
|
||||
std::complex<float>* _resampled_signal = new std::complex<float>[_samplesPerCode];
|
||||
float* _resampled_signal = new float[_samplesPerCode];
|
||||
resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs,
|
||||
_codeLength, _samplesPerCode); //resamples code to fs
|
||||
|
||||
@ -192,8 +199,8 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
|
||||
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
|
||||
{
|
||||
|
||||
std::complex<float>* _signal_E1C_secondary = new std::complex<float>
|
||||
[static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH)
|
||||
float* _signal_E1C_secondary = new float[
|
||||
static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH)
|
||||
* _samplesPerCode];
|
||||
|
||||
for (unsigned int i = 0; i < static_cast<unsigned int>(Galileo_E1_C_SECONDARY_CODE_LENGTH); i++)
|
||||
@ -202,7 +209,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
|
||||
{
|
||||
_signal_E1C_secondary[i*_samplesPerCode + k] = _signal_E1[k]
|
||||
* (Galileo_E1_C_SECONDARY_CODE.at(i) == '0'
|
||||
? std::complex<float>(1,0) : std::complex<float>(-1,0));
|
||||
? 1.0f : -1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
@ -220,6 +227,36 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
|
||||
delete[] _signal_E1;
|
||||
}
|
||||
|
||||
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift,
|
||||
bool _secondary_flag)
|
||||
{
|
||||
std::string _galileo_signal = _Signal;
|
||||
const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
|
||||
unsigned int _samplesPerCode = static_cast<unsigned int>(
|
||||
static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis )
|
||||
/ static_cast<double>(Galileo_E1_B_CODE_LENGTH_CHIPS)));
|
||||
|
||||
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
|
||||
{
|
||||
_samplesPerCode *= static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
|
||||
}
|
||||
|
||||
float real_code[_samplesPerCode];
|
||||
|
||||
galileo_e1_code_gen_float_sampled( real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag );
|
||||
|
||||
for( unsigned int ii = 0; ii < _samplesPerCode; ++ii )
|
||||
{
|
||||
_dest[ii] = std::complex< float >( real_code[ii], 0.0f );
|
||||
}
|
||||
}
|
||||
|
||||
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift)
|
||||
{
|
||||
galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
|
||||
}
|
||||
|
||||
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift)
|
||||
|
@ -36,30 +36,22 @@
|
||||
|
||||
|
||||
/*!
|
||||
* \brief This function generates Galileo E1 code (one sample per chip).
|
||||
* \brief This function generates Galileo E1 code (can select E1B or E1C, cboc or sinboc
|
||||
* and the sample frequency _fs).
|
||||
*
|
||||
*/
|
||||
void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn);
|
||||
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift,
|
||||
bool _secondary_flag);
|
||||
|
||||
/*!
|
||||
* \brief This function generates Galileo E1 sinboc(1,1) code (minimum 2 samples per chip),
|
||||
* the _codeLength variable must be a multiple of 2*4092.
|
||||
* \brief This function generates Galileo E1 code (can select E1B or E1C, cboc or sinboc
|
||||
* and the sample frequency _fs).
|
||||
*
|
||||
*/
|
||||
void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn,
|
||||
unsigned int _codeLength);
|
||||
/*!
|
||||
* \brief This function generates Galileo E1 sinboc(6,1) code (minimum 12 samples per chip),
|
||||
* the _codeLength variable must be a multiple of 12*4092.
|
||||
*
|
||||
*/
|
||||
void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn,
|
||||
unsigned int _codeLength);
|
||||
/*!
|
||||
* \brief This function generates Galileo E1 cboc code (12 samples per chip).
|
||||
*
|
||||
*/
|
||||
void galileo_e1_cboc_gen(std::complex<float>* _dest, int* _prn, char _Signal[3]);
|
||||
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
|
||||
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift);
|
||||
|
||||
/*!
|
||||
* \brief This function generates Galileo E1 code (can select E1B or E1C, cboc or sinboc
|
||||
* and the sample frequency _fs).
|
||||
|
@ -156,6 +156,28 @@ void hex_to_binary_converter(int * _dest, char _from)
|
||||
}
|
||||
}
|
||||
|
||||
void resampler(float* _from, float* _dest, float _fs_in,
|
||||
float _fs_out, unsigned int _length_in, unsigned int _length_out)
|
||||
{
|
||||
unsigned int _codeValueIndex;
|
||||
float aux;
|
||||
//--- Find time constants --------------------------------------------------
|
||||
const float _t_in = 1 / _fs_in; // Incoming sampling period in sec
|
||||
const float _t_out = 1 / _fs_out; // Out sampling period in sec
|
||||
for (unsigned int i = 0; i < _length_out - 1; i++)
|
||||
{
|
||||
//=== Digitizing =======================================================
|
||||
//--- compute index array to read sampled values -------------------------
|
||||
//_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
|
||||
aux = (_t_out * (i + 1)) / _t_in;
|
||||
_codeValueIndex = auxCeil2(aux) - 1;
|
||||
|
||||
//if repeat the chip -> upsample by nearest neighborhood interpolation
|
||||
_dest[i] = _from[_codeValueIndex];
|
||||
}
|
||||
//--- Correct the last index (due to number rounding issues) -----------
|
||||
_dest[_length_out - 1] = _from[_length_in - 1];
|
||||
}
|
||||
|
||||
void resampler(std::complex<float>* _from, std::complex<float>* _dest, float _fs_in,
|
||||
float _fs_out, unsigned int _length_in, unsigned int _length_out)
|
||||
|
@ -60,6 +60,13 @@ void complex_exp_gen_conj(std::complex<float>* _dest, double _f, double _fs,
|
||||
*/
|
||||
void hex_to_binary_converter(int * _dest, char _from);
|
||||
|
||||
/*!
|
||||
* \brief This function resamples a sequence of float values.
|
||||
*
|
||||
*/
|
||||
void resampler(float* _from, float* _dest,
|
||||
float _fs_in, float _fs_out, unsigned int _length_in,
|
||||
unsigned int _length_out);
|
||||
/*!
|
||||
* \brief This function resamples a sequence of complex values.
|
||||
*
|
||||
|
@ -34,7 +34,7 @@
|
||||
|
||||
auto auxCeil = [](float x){ return static_cast<int>(static_cast<long>((x)+1)); };
|
||||
|
||||
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift)
|
||||
void gps_l1_ca_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift)
|
||||
{
|
||||
const unsigned int _code_length = 1023;
|
||||
bool G1[_code_length];
|
||||
@ -102,17 +102,44 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
|
||||
aux = G1[(lcv + _chip_shift) % _code_length]^G2[delay];
|
||||
if(aux == true)
|
||||
{
|
||||
_dest[lcv] = std::complex<float>(1, 0);
|
||||
_dest[lcv] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
_dest[lcv] = std::complex<float>(-1, 0);
|
||||
_dest[lcv] = -1;
|
||||
}
|
||||
delay++;
|
||||
delay %= _code_length;
|
||||
}
|
||||
}
|
||||
|
||||
void gps_l1_ca_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift)
|
||||
{
|
||||
unsigned int _code_length = 1023;
|
||||
int ca_code_int[ _code_length ];
|
||||
|
||||
gps_l1_ca_code_gen_int( ca_code_int, _prn, _chip_shift );
|
||||
|
||||
for( unsigned int ii = 0; ii < _code_length; ++ii )
|
||||
{
|
||||
_dest[ii] = static_cast<float>( ca_code_int[ii] );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift)
|
||||
{
|
||||
unsigned int _code_length = 1023;
|
||||
int ca_code_int[ _code_length ];
|
||||
|
||||
gps_l1_ca_code_gen_int( ca_code_int, _prn, _chip_shift );
|
||||
|
||||
for( unsigned int ii = 0; ii < _code_length; ++ii )
|
||||
{
|
||||
_dest[ii] = std::complex< float >( static_cast<float>(ca_code_int[ii]), 0.0f );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
@ -35,6 +35,12 @@
|
||||
|
||||
#include <complex>
|
||||
|
||||
//!Generates int GPS L1 C/A code for the desired SV ID and code shift
|
||||
void gps_l1_ca_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift);
|
||||
|
||||
//!Generates float GPS L1 C/A code for the desired SV ID and code shift
|
||||
void gps_l1_ca_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift);
|
||||
|
||||
//!Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
|
||||
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift);
|
||||
|
||||
|
@ -33,6 +33,7 @@ endif(ENABLE_CUDA)
|
||||
|
||||
set(TRACKING_LIB_SOURCES
|
||||
cpu_multicorrelator.cc
|
||||
cpu_multicorrelator_real_codes.cc
|
||||
cpu_multicorrelator_16sc.cc
|
||||
lock_detectors.cc
|
||||
tcp_communication.cc
|
||||
|
147
src/algorithms/tracking/libs/cpu_multicorrelator_real_codes.cc
Normal file
147
src/algorithms/tracking/libs/cpu_multicorrelator_real_codes.cc
Normal file
@ -0,0 +1,147 @@
|
||||
/*!
|
||||
* \file cpu_multicorrelator_real_codes.cc
|
||||
* \brief High optimized CPU vector multiTAP correlator class with real-valued local codes
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* <li> Cillian O'Driscoll, 2017. cillian.odriscoll(at)gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* Class that implements a high optimized vector multiTAP correlator class for CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "cpu_multicorrelator_real_codes.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
|
||||
cpu_multicorrelator_real_codes::cpu_multicorrelator_real_codes()
|
||||
{
|
||||
d_sig_in = nullptr;
|
||||
d_local_code_in = nullptr;
|
||||
d_shifts_chips = nullptr;
|
||||
d_corr_out = nullptr;
|
||||
d_local_codes_resampled = nullptr;
|
||||
d_code_length_chips = 0;
|
||||
d_n_correlators = 0;
|
||||
}
|
||||
|
||||
|
||||
cpu_multicorrelator_real_codes::~cpu_multicorrelator_real_codes()
|
||||
{
|
||||
if(d_local_codes_resampled != nullptr)
|
||||
{
|
||||
cpu_multicorrelator_real_codes::free();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool cpu_multicorrelator_real_codes::init(
|
||||
int max_signal_length_samples,
|
||||
int n_correlators)
|
||||
{
|
||||
// ALLOCATE MEMORY FOR INTERNAL vectors
|
||||
size_t size = max_signal_length_samples * sizeof(float);
|
||||
|
||||
d_local_codes_resampled = static_cast<float**>(volk_gnsssdr_malloc(n_correlators * sizeof(float*), volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < n_correlators; n++)
|
||||
{
|
||||
d_local_codes_resampled[n] = static_cast<float*>(volk_gnsssdr_malloc(size, volk_gnsssdr_get_alignment()));
|
||||
}
|
||||
d_n_correlators = n_correlators;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool cpu_multicorrelator_real_codes::set_local_code_and_taps(
|
||||
int code_length_chips,
|
||||
const float* local_code_in,
|
||||
float *shifts_chips)
|
||||
{
|
||||
d_local_code_in = local_code_in;
|
||||
d_shifts_chips = shifts_chips;
|
||||
d_code_length_chips = code_length_chips;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool cpu_multicorrelator_real_codes::set_input_output_vectors(std::complex<float>* corr_out, const std::complex<float>* sig_in)
|
||||
{
|
||||
// Save CPU pointers
|
||||
d_sig_in = sig_in;
|
||||
d_corr_out = corr_out;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
|
||||
{
|
||||
volk_gnsssdr_32f_xn_resampler_32f_xn(d_local_codes_resampled,
|
||||
d_local_code_in,
|
||||
rem_code_phase_chips,
|
||||
code_phase_step_chips,
|
||||
d_shifts_chips,
|
||||
d_code_length_chips,
|
||||
d_n_correlators,
|
||||
correlator_length_samples);
|
||||
}
|
||||
|
||||
|
||||
bool cpu_multicorrelator_real_codes::Carrier_wipeoff_multicorrelator_resampler(
|
||||
float rem_carrier_phase_in_rad,
|
||||
float phase_step_rad,
|
||||
float rem_code_phase_chips,
|
||||
float code_phase_step_chips,
|
||||
int signal_length_samples)
|
||||
{
|
||||
update_local_code(signal_length_samples, rem_code_phase_chips, code_phase_step_chips);
|
||||
// Regenerate phase at each call in order to avoid numerical issues
|
||||
lv_32fc_t phase_offset_as_complex[1];
|
||||
phase_offset_as_complex[0] = lv_cmake(std::cos(rem_carrier_phase_in_rad), -std::sin(rem_carrier_phase_in_rad));
|
||||
// call VOLK_GNSSSDR kernel
|
||||
volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn(d_corr_out, d_sig_in, std::exp(lv_32fc_t(0, - phase_step_rad)), phase_offset_as_complex, (const float**)d_local_codes_resampled, d_n_correlators, signal_length_samples);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool cpu_multicorrelator_real_codes::free()
|
||||
{
|
||||
// Free memory
|
||||
if (d_local_codes_resampled != nullptr)
|
||||
{
|
||||
for (int n = 0; n < d_n_correlators; n++)
|
||||
{
|
||||
volk_gnsssdr_free(d_local_codes_resampled[n]);
|
||||
}
|
||||
volk_gnsssdr_free(d_local_codes_resampled);
|
||||
d_local_codes_resampled = nullptr;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,70 @@
|
||||
/*!
|
||||
* \file cpu_multicorrelator_real_codes.h
|
||||
* \brief High optimized CPU vector multiTAP correlator class using real-valued local codes
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* <li> Cillian O'Driscoll, 2017, cillian.odriscoll(at)gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* Class that implements a high optimized vector multiTAP correlator class for CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_CPU_MULTICORRELATOR_REAL_CODES_H_
|
||||
#define GNSS_SDR_CPU_MULTICORRELATOR_REAL_CODES_H_
|
||||
|
||||
|
||||
#include <complex>
|
||||
|
||||
/*!
|
||||
* \brief Class that implements carrier wipe-off and correlators.
|
||||
*/
|
||||
class cpu_multicorrelator_real_codes
|
||||
{
|
||||
public:
|
||||
cpu_multicorrelator_real_codes();
|
||||
~cpu_multicorrelator_real_codes();
|
||||
bool init(int max_signal_length_samples, int n_correlators);
|
||||
bool set_local_code_and_taps(int code_length_chips, const float* local_code_in, float *shifts_chips);
|
||||
bool set_input_output_vectors(std::complex<float>* corr_out, const std::complex<float>* sig_in);
|
||||
void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips);
|
||||
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
|
||||
bool free();
|
||||
|
||||
private:
|
||||
// Allocate the device input vectors
|
||||
const std::complex<float> *d_sig_in;
|
||||
float **d_local_codes_resampled;
|
||||
const float *d_local_code_in;
|
||||
std::complex<float> *d_corr_out;
|
||||
float *d_shifts_chips;
|
||||
int d_code_length_chips;
|
||||
int d_n_correlators;
|
||||
};
|
||||
|
||||
|
||||
#endif /* CPU_MULTICORRELATOR_REAL_CODES_H_ */
|
||||
|
@ -0,0 +1,174 @@
|
||||
/*!
|
||||
* \file cpu_multicorrelator_real_codes_test.cc
|
||||
* \brief This file implements timing tests for the FFT.
|
||||
* \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
|
||||
*
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2016 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include <chrono>
|
||||
#include <complex>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <gtest/gtest.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include "cpu_multicorrelator_real_codes.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
|
||||
|
||||
DEFINE_int32(cpu_multicorrelator_real_codes_iterations_test, 1000, "Number of averaged iterations in CPU multicorrelator test timing test");
|
||||
DEFINE_int32(cpu_multicorrelator_real_codes_max_threads_test, 12, "Number of maximum concurrent correlators in CPU multicorrelator test timing test");
|
||||
|
||||
void run_correlator_cpu(cpu_multicorrelator_real_codes* correlator,
|
||||
float d_rem_carrier_phase_rad,
|
||||
float d_carrier_phase_step_rad,
|
||||
float d_code_phase_step_chips,
|
||||
float d_rem_code_phase_chips,
|
||||
int correlation_size)
|
||||
{
|
||||
for(int k = 0; k < FLAGS_cpu_multicorrelator_real_codes_iterations_test; k++)
|
||||
{
|
||||
correlator->Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,
|
||||
d_carrier_phase_step_rad,
|
||||
d_code_phase_step_chips,
|
||||
d_rem_code_phase_chips,
|
||||
correlation_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST(CpuMulticorrelatorRealCodesTest, MeasureExecutionTime)
|
||||
{
|
||||
std::chrono::time_point<std::chrono::system_clock> start, end;
|
||||
std::chrono::duration<double> elapsed_seconds(0);
|
||||
int max_threads = FLAGS_cpu_multicorrelator_real_codes_max_threads_test;
|
||||
std::vector<std::thread> thread_pool;
|
||||
cpu_multicorrelator_real_codes* correlator_pool[max_threads];
|
||||
unsigned int correlation_sizes [3] = { 2048, 4096, 8192};
|
||||
double execution_times [3];
|
||||
|
||||
float* d_ca_code;
|
||||
gr_complex* in_cpu;
|
||||
gr_complex* d_correlator_outs;
|
||||
|
||||
int d_n_correlator_taps = 3;
|
||||
int d_vector_length = correlation_sizes[2]; //max correlation size to allocate all the necessary memory
|
||||
float* d_local_code_shift_chips;
|
||||
|
||||
//allocate host memory
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<float*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
in_cpu = static_cast<gr_complex*>(volk_gnsssdr_malloc(2 * d_vector_length * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
d_correlator_outs = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0,0);
|
||||
}
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
float d_early_late_spc_chips = 0.5;
|
||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
|
||||
//local code resampler on GPU
|
||||
// generate local reference (1 sample per chip)
|
||||
gps_l1_ca_code_gen_float(d_ca_code, 1, 0);
|
||||
// generate inut signal
|
||||
std::random_device r;
|
||||
std::default_random_engine e1(r());
|
||||
std::uniform_real_distribution<float> uniform_dist(0, 1);
|
||||
for (int n = 0; n < 2 * d_vector_length; n++)
|
||||
{
|
||||
in_cpu[n] = std::complex<float>(uniform_dist(e1), uniform_dist(e1));
|
||||
}
|
||||
|
||||
for (int n = 0; n < max_threads; n++)
|
||||
{
|
||||
correlator_pool[n] = new cpu_multicorrelator_real_codes();
|
||||
correlator_pool[n]->init(d_vector_length, d_n_correlator_taps);
|
||||
correlator_pool[n]->set_input_output_vectors(d_correlator_outs, in_cpu);
|
||||
correlator_pool[n]->set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
|
||||
}
|
||||
|
||||
float d_rem_carrier_phase_rad = 0.0;
|
||||
float d_carrier_phase_step_rad = 0.1;
|
||||
float d_code_phase_step_chips = 0.3;
|
||||
float d_rem_code_phase_chips = 0.4;
|
||||
|
||||
EXPECT_NO_THROW(
|
||||
for(int correlation_sizes_idx = 0; correlation_sizes_idx < 3; correlation_sizes_idx++)
|
||||
{
|
||||
for(int current_max_threads = 1; current_max_threads < (max_threads+1); current_max_threads++)
|
||||
{
|
||||
std::cout << "Running " << current_max_threads << " concurrent correlators" << std::endl;
|
||||
start = std::chrono::system_clock::now();
|
||||
//create the concurrent correlator threads
|
||||
for (int current_thread = 0; current_thread < current_max_threads; current_thread++)
|
||||
{
|
||||
thread_pool.push_back(std::thread(run_correlator_cpu,
|
||||
correlator_pool[current_thread],
|
||||
d_rem_carrier_phase_rad,
|
||||
d_carrier_phase_step_rad,
|
||||
d_code_phase_step_chips,
|
||||
d_rem_code_phase_chips,
|
||||
correlation_sizes[correlation_sizes_idx]));
|
||||
}
|
||||
//wait the threads to finish they work and destroy the thread objects
|
||||
for(auto &t : thread_pool)
|
||||
{
|
||||
t.join();
|
||||
}
|
||||
thread_pool.clear();
|
||||
end = std::chrono::system_clock::now();
|
||||
elapsed_seconds = end - start;
|
||||
execution_times[correlation_sizes_idx] = elapsed_seconds.count() / static_cast<double>(FLAGS_cpu_multicorrelator_real_codes_iterations_test);
|
||||
std::cout << "CPU Multicorrelator (real codes) execution time for length=" << correlation_sizes[correlation_sizes_idx]
|
||||
<< " : " << execution_times[correlation_sizes_idx] << " [s]" << std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||
volk_gnsssdr_free(d_correlator_outs);
|
||||
volk_gnsssdr_free(d_ca_code);
|
||||
volk_gnsssdr_free(in_cpu);
|
||||
|
||||
for (int n = 0; n< max_threads; n++)
|
||||
{
|
||||
correlator_pool[n]->free();
|
||||
}
|
||||
}
|
||||
|
@ -33,6 +33,9 @@
|
||||
#include <complex>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <gtest/gtest.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include "cpu_multicorrelator.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
|
Loading…
Reference in New Issue
Block a user