1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 21:20:34 +00:00
gnss-sdr/src/algorithms/libs/gps_sdr_signal_replica.cc
Carles Fernandez 7308745f05
Apply more concise file header format
Re-license CMake scripts with BSD-3-Clause
2020-12-30 13:35:06 +01:00

177 lines
6.1 KiB
C++

/*!
* \file gps_sdr_signal_replica.cc
* \brief This file implements functions for GPS L1 C/A signal replica
* generation
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "gps_sdr_signal_replica.h"
#include <array>
#include <bitset>
const auto AUX_CEIL = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void gps_l1_ca_code_gen_int(own::span<int32_t> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 1023;
std::bitset<code_length> G1{};
std::bitset<code_length> G2{};
auto G1_register = std::bitset<10>{}.set(); // All true
auto G2_register = std::bitset<10>{}.set(); // All true
uint32_t lcv;
uint32_t lcv2;
uint32_t delay;
int32_t prn_idx;
bool feedback1;
bool feedback2;
bool aux;
// G2 Delays as defined in GPS-ISD-200D
const std::array<int32_t, 51> delays = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472,
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/,
145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762,
355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/};
// compute delay array index for given PRN number
if (120 <= prn && prn <= 138)
{
prn_idx = prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
}
else
{
prn_idx = prn - 1;
}
// A simple error check
if ((prn_idx < 0) || (prn_idx > 51))
{
return;
}
// Generate G1 & G2 Register
for (lcv = 0; lcv < code_length; lcv++)
{
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[0];
feedback1 = G1_register[7] xor G1_register[0];
feedback2 = G2_register[8] xor G2_register[7] xor G2_register[4] xor G2_register[2] xor G2_register[1] xor G2_register[0];
for (lcv2 = 0; lcv2 < 9; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
G2_register[lcv2] = G2_register[lcv2 + 1];
}
G1_register[9] = feedback1;
G2_register[9] = feedback2;
}
// Set the delay
delay = code_length - delays[prn_idx];
delay += chip_shift;
delay %= code_length;
// Generate PRN from G1 and G2 Registers
for (lcv = 0; lcv < code_length; lcv++)
{
aux = G1[(lcv + chip_shift) % code_length] xor G2[delay];
if (aux == true)
{
dest[lcv] = 1;
}
else
{
dest[lcv] = -1;
}
delay++;
delay %= code_length;
}
}
void gps_l1_ca_code_gen_float(own::span<float> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 1023;
std::array<int32_t, code_length> ca_code_int{};
gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift);
for (uint32_t ii = 0; ii < code_length; ++ii)
{
dest[ii] = static_cast<float>(ca_code_int[ii]);
}
}
void gps_l1_ca_code_gen_complex(own::span<std::complex<float>> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 1023;
std::array<int32_t, code_length> ca_code_int{};
gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift);
for (uint32_t ii = 0; ii < code_length; ++ii)
{
dest[ii] = std::complex<float>(0.0F, static_cast<float>(ca_code_int[ii]));
}
}
/*
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
* NOTICE: the number of samples is rounded towards zero (integer truncation)
*/
void gps_l1_ca_code_gen_complex_sampled(own::span<std::complex<float>> dest, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
constexpr int32_t codeFreqBasis = 1023000; // chips per second
constexpr int32_t codeLength = 1023;
constexpr float tc = 1.0F / static_cast<float>(codeFreqBasis); // C/A chip period in sec
const auto samplesPerCode = static_cast<int32_t>(static_cast<double>(sampling_freq) / (static_cast<double>(codeFreqBasis) / static_cast<double>(codeLength)));
const float ts = 1.0F / static_cast<float>(sampling_freq); // Sampling period in sec
std::array<std::complex<float>, 1023> code_aux{};
int32_t codeValueIndex;
float aux;
gps_l1_ca_code_gen_complex(code_aux, prn, chip_shift); // generate C/A code 1 sample per chip
for (int32_t i = 0; i < samplesPerCode; i++)
{
// === Digitizing ==================================================
// --- Make index array to read C/A code values --------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
aux = (ts * (static_cast<float>(i) + 1)) / tc;
codeValueIndex = AUX_CEIL(aux) - 1;
// --- Make the digitized version of the C/A code -------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == samplesPerCode - 1)
{
// --- Correct the last index (due to number rounding issues)
dest[i] = code_aux[codeLength - 1];
}
else
{
dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample
}
}
}