Patch submitted by Daniel Fehr: Enabling EGNOS tracking and minor bugfixes

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@392 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Carles Fernandez 2013-07-20 07:58:59 +00:00
parent 1ad1f0569c
commit 10318d6b7d
5 changed files with 529 additions and 37 deletions

466
conf/gnss-sdr_sbas.conf Normal file
View File

@ -0,0 +1,466 @@
; configuration file for SBAS
; invoke it by doing
; gnss-sdr --config_file=../conf/gnss-sdr_sbas.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;#internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] or [Rtlsdr_Signal_Source]
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/Users/fehrdan/GNSS/dev/data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples.
;#Use gr_complex for 32 bits float I/Q or short for I/Q interleaved short integer.
;#If short is selected you should have to instantiate the Ishort_To_Complex data_type_adapter.
SignalSource.item_type=short
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain=60
;#AGC_enabled: RTLSDR AGC enabled [true or false]
SignalSource.AGC_enabled=true
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: Use [Ishort_To_Complex] or [Pass_Through]
DataTypeAdapter.implementation=Ishort_To_Complex
;#dump: Dump the filtered data to a file.
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.85
InputFilter.band2_begin=0.90
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels.count=3
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=3
;#system: GPS, GLONASS, Galileo, SBAS or Compass
;#if the option is disabled by default is assigned GPS
Channel.system=GPS
;#signal:
;# "1C" GPS L1 C/A
;# "1P" GPS L1 P
;# "1W" GPS L1 Z-tracking and similar (AS on)
;# "1Y" GPS L1 Y
;# "1M" GPS L1 M
;# "1N" GPS L1 codeless
;# "2C" GPS L2 C/A
;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless
;# "2S" GPS L2 L2C (M)
;# "2L" GPS L2 L2C (L)
;# "2X" GPS L2 L2C (M+L)
;# "2P" GPS L2 P
;# "2W" GPS L2 Z-tracking and similar (AS on)
;# "2Y" GPS L2 Y
;# "2M" GPS GPS L2 M
;# "2N" GPS L2 codeless
;# "5I" GPS L5 I
;# "5Q" GPS L5 Q
;# "5X" GPS L5 I+Q
;# "1C" GLONASS G1 C/A
;# "1P" GLONASS G1 P
;# "2C" GLONASS G2 C/A (Glonass M)
;# "2P" GLONASS G2 P
;# "1A" GALILEO E1 A (PRS)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1C" GALILEO E1 C (no data)
;# "1X" GALILEO E1 B+C
;# "1Z" GALILEO E1 A+B+C
;# "5I" GALILEO E5a I (F/NAV OS)
;# "5Q" GALILEO E5a Q (no data)
;# "5X" GALILEO E5a I+Q
;# "7I" GALILEO E5b I
;# "7Q" GALILEO E5b Q
;# "7X" GALILEO E5b I+Q
;# "8I" GALILEO E5 I
;# "8Q" GALILEO E5 Q
;# "8X" GALILEO E5 I+Q
;# "6A" GALILEO E6 A
;# "6B" GALILEO E6 B
;# "6C" GALILEO E6 C
;# "6X" GALILEO E6 B+C
;# "6Z" GALILEO E6 A+B+C
;# "1C" SBAS L1 C/A
;# "5I" SBAS L5 I
;# "5Q" SBAS L5 Q
;# "5X" SBAS L5 I+Q
;# "2I" COMPASS E2 I
;# "2Q" COMPASS E2 Q
;# "2X" COMPASS E2 IQ
;# "7I" COMPASS E5b I
;# "7Q" COMPASS E5b Q
;# "7X" COMPASS E5b IQ
;# "6I" COMPASS E6 I
;# "6Q" COMPASS E6 Q
;# "6X" COMPASS E6 IQ
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
Channel0.system=SBAS
Channel0.signal=1C
Channel0.satellite=124 ;#satellite: Satellite PRN ID for this channel. Disable this option to random search
Channel0.repeat_satellite=true
;######### CHANNEL 1 CONFIG ############
Channel1.system=SBAS
Channel1.signal=1C
Channel1.satellite=120
Channel1.repeat_satellite=true
;######### CHANNEL 2 CONFIG ############
Channel2.system=SBAS
Channel2.signal=1C
Channel2.satellite=126
Channel2.repeat_satellite=true
;######### CHANNEL 3 CONFIG ############
Channel3.system=GPS
Channel3.signal=1C
Channel3.satellite=21
Channel3.repeat_satellite=false
;######### CHANNEL 4 CONFIG ############
Channel4.system=GPS
Channel4.signal=1C
Channel4.satellite=3
Channel4.repeat_satellite=false
;######### CHANNEL 5 CONFIG ############
Channel5.system=GPS
Channel5.signal=1C
;Channel5.satellite=21
;Channel5.repeat_satellite=false
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition.dump=false
;#filename: Log path and filename
Acquisition.dump_filename=../data/acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition.threshold=0.005
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition.doppler_step=500
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION CH 0 CONFIG ############
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition]
Acquisition0.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition0.threshold=0.005
Acquisition0.pfa=0.00001
Acquisition0.doppler_max=10000
Acquisition0.doppler_step=250
;#repeat_satellite: Use only jointly with the satellte PRN ID option.
Acquisition0.repeat_satellite=false
;######### ACQUISITION CH 1 CONFIG ############
Acquisition1.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition1.threshold=0.005
Acquisition1.pfa=0.00001
Acquisition1.doppler_max=10000
Acquisition1.doppler_step=250
Acquisition1.repeat_satellite=true
;######### ACQUISITION CH 2 CONFIG ############
Acquisition2.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition2.threshold=0.005
Acquisition2.pfa=0.00001
Acquisition2.doppler_max=10000
Acquisition2.doppler_step=250
Acquisition2.repeat_satellite=true
;######### ACQUISITION CH 3 CONFIG ############
Acquisition3.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition3.threshold=0.005
Acquisition3.pfa=0.001
Acquisition3.doppler_max=10000
Acquisition3.doppler_step=250
;######### ACQUISITION CH 4 CONFIG ############
Acquisition4.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition4.threshold=0.005
Acquisition4.pfa=0.001
Acquisition4.doppler_max=10000
Acquisition4.doppler_step=250
;######### ACQUISITION CH 5 CONFIG ############
Acquisition5.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition5.threshold=60
Acquisition5.doppler_max=10000
Acquisition5.doppler_step=250
;######### ACQUISITION CH 6 CONFIG ############
Acquisition6.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition6.threshold=0.005
Acquisition6.pfa=0.001
Acquisition6.doppler_max=10000
Acquisition6.doppler_step=250
;######### ACQUISITION CH 7 CONFIG ############
Acquisition7.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition7.threshold=0.005
Acquisition7.pfa=0.001
Acquisition7.doppler_max=10000
Acquisition7.doppler_step=250
;######### ACQUISITION CH 8 CONFIG ############
Acquisition8.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition8.threshold=0.005
Acquisition8.pfa=0.001
Acquisition8.doppler_max=10000
Acquisition8.doppler_step=250
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking.dump_filename=../data/tracking/tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking.pll_bw_hz=25.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking.fll_bw_hz=5.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking.early_late_space_chips=0.5;
;######### TELEMETRY DECODER CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A.
TelemetryDecoder.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=../data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -179,7 +179,9 @@ gr::basic_block_sptr Channel::get_right_block()
void Channel::set_signal(Gnss_Signal gnss_signal)
{
gnss_signal_ = gnss_signal;
gnss_signal_.get_signal().copy(gnss_synchro_.Signal,2,0);
const char * str = gnss_signal_.get_signal().c_str(); // get a C style null terminated string
std::memcpy((void*)gnss_synchro_.Signal, str,3); // copy string into synchro char array: 2 char + null
gnss_synchro_.Signal[2] = 0; // make sure that string length is only two characters
gnss_synchro_.PRN = gnss_signal_.get_satellite().get_PRN();
gnss_synchro_.System = gnss_signal_.get_satellite().get_system_short().c_str()[0];
acq_->init();

View File

@ -43,15 +43,26 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
unsigned int feedback1, feedback2;
unsigned int lcv, lcv2;
unsigned int delay;
signed int prn = _prn-1; //Move the PRN code to fit an array indices
signed int prn_idx;
/* G2 Delays as defined in GPS-ISD-200D */
signed int delays[51] = {5, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254 ,255, 256, 257, 258, 469, 470, 471, 472,
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862, 145, 175, 52, 21, 237, 235, 886, 657, 634, 762,
355, 1012, 176, 603, 130, 359, 595, 68, 386};
signed int delays[51] = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254 ,255, 256, 257, 258, 469, 470, 471, 472,
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/,
145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762,
355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/};
// compute delay array index for given PRN number
if(120 <= _prn && _prn <= 138)
{
prn_idx = _prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
}
else
{
prn_idx = _prn-1;
}
/* A simple error check */
if((prn < 0) || (prn > 51))
if((prn_idx < 0) || (prn_idx > 51))
return;
for(lcv = 0; lcv < 10; lcv++)
@ -80,7 +91,7 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
}
/* Set the delay */
delay = 1023 - delays[prn];
delay = 1023 - delays[prn_idx];
delay += _chip_shift;
delay %= 1023;
/* Generate PRN from G1 and G2 Registers */

View File

@ -351,6 +351,10 @@ Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::~Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc()
int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
@ -501,29 +505,24 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", Doppler=" << d_carrier_doppler_hz<<" [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", Doppler=" << d_carrier_doppler_hz<<" [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
}
}
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", Doppler="<<d_carrier_doppler_hz<<" [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
std::cout << tmp_str_stream.rdbuf() << std::flush;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
//if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{

View File

@ -525,18 +525,16 @@ void GNSSFlowgraph::init()
void GNSSFlowgraph::set_signals_list()
{
/*
* Sets a sequential list of satellites (1, 2, ...32)
* Sets a sequential list of GNSS satellites
*/
std::set<unsigned int>::iterator available_gnss_prn_iter;
/*
* \TODO Describe GNSS satellites more nicely, with RINEX notation
* See http://igscb.jpl.nasa.gov/igscb/data/format/rinex301.pdf (page 5)
*/
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32 };
std::set<unsigned int>::iterator available_gnss_prn_iter;
/*
@ -547,6 +545,9 @@ void GNSSFlowgraph::set_signals_list()
/*
* Loop to create GPS L1 C/A signals
*/
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32 };
for (available_gnss_prn_iter = available_gps_prn.begin(); available_gnss_prn_iter
!= available_gps_prn.end(); available_gnss_prn_iter++)
@ -555,13 +556,25 @@ void GNSSFlowgraph::set_signals_list()
*available_gnss_prn_iter), std::string("1C")));
}
/*
* Loop to create SBAS L1 C/A signals
*/
std::set<unsigned int> available_sbas_prn = { 120, 124, 126};
for (available_gnss_prn_iter = available_sbas_prn.begin(); available_gnss_prn_iter
!= available_sbas_prn.end(); available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("SBAS"),
*available_gnss_prn_iter), std::string("1C")));
}
/*
* Loop to create the list of Galileo E1 B signals
*/
std::set<unsigned int> available_galileo_prn = { 11, 12, 19, 20 };
for (available_gnss_prn_iter = available_galileo_prn.begin(); available_gnss_prn_iter
!= available_galileo_prn.end(); available_gnss_prn_iter++)
{
@ -569,6 +582,7 @@ void GNSSFlowgraph::set_signals_list()
*available_gnss_prn_iter), std::string("1B")));
}
/*
* Ordering the list of signals from configuration file
*/