1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-12-18 14:10:28 +00:00

copy pasting what seems to work to bench,sample as well. ty @lantiga

This commit is contained in:
Andrej Karpathy 2023-01-08 19:32:13 +00:00
parent a855d316fd
commit b77c2e86d3
2 changed files with 25 additions and 15 deletions

View File

@ -2,23 +2,29 @@
A much shorter version of train.py for benchmarking
"""
import os
from contextlib import nullcontext
import numpy as np
import time
import torch
from model import GPTConfig, GPT
# -----------------------------------------------------------------------------
device = 'cuda'
batch_size = 8
block_size = 1024
compile = True
seed = 1337
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
compile = True # use PyTorch 2.0 to compile the model to be faster
exec(open('configurator.py').read()) # overrides from command line or config file
# -----------------------------------------------------------------------------
dtype = torch.bfloat16 # todo make configurable
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.manual_seed(1337)
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# data loading init
real_data = True
@ -74,7 +80,7 @@ if profile:
for k in range(num_steps):
X, Y = get_batch('train')
with torch.autocast(device_type='cuda', dtype=dtype):
with ctx:
logits, loss = model(X, Y)
optimizer.zero_grad(set_to_none=True)
loss.backward()
@ -92,7 +98,7 @@ else:
t0 = time.time()
for k in range(num_steps):
X, Y = get_batch('train')
with torch.autocast(device_type='cuda', dtype=dtype):
with ctx:
logits, loss = model(X, Y)
optimizer.zero_grad(set_to_none=True)
loss.backward()

View File

@ -2,20 +2,22 @@
Sample from a trained model
"""
import os
from contextlib import nullcontext
import torch
import tiktoken
from model import GPTConfig, GPT
# -----------------------------------------------------------------------------
out_dir = 'out'
device = 'cuda'
compile = False
start = "\n" # or "<|endoftext|>" or whatever you like
num_samples = 10 # number of samples to draw
max_new_tokens = 500 # number of tokens generated in each sample
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
compile = False # use PyTorch 2.0 to compile the model to be faster
exec(open('configurator.py').read()) # overrides from command line or config file
# -----------------------------------------------------------------------------
@ -23,6 +25,9 @@ torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# model
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
@ -45,11 +50,10 @@ enc = tiktoken.get_encoding("gpt2")
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
for k in range(num_samples):
# run generation
with torch.no_grad():
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with ctx:
for k in range(num_samples):
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
print(enc.decode(y[0].tolist()))
print('---------------')