mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 05:02:53 +00:00
add device and dtype support to train.py args
This commit is contained in:
parent
e7cd674ce7
commit
a855d316fd
14
train.py
14
train.py
@ -12,6 +12,7 @@ $ torchrun --standalone --nproc_per_node=4 train.py
|
||||
import os
|
||||
import time
|
||||
import math
|
||||
from contextlib import nullcontext
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -56,11 +57,14 @@ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchi
|
||||
# DDP settings
|
||||
backend = 'nccl' # 'nccl', 'gloo', etc.
|
||||
# system
|
||||
device = 'cuda'
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16'
|
||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||
# -----------------------------------------------------------------------------
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
# various inits, derived attributes, I/O setup
|
||||
ddp = int(os.environ.get('LOCAL_RANK', -1)) != -1 # is this a ddp run?
|
||||
if ddp:
|
||||
init_process_group(backend=backend)
|
||||
@ -74,6 +78,10 @@ if gpu_id == 0:
|
||||
torch.manual_seed(1337 + gpu_id) # note: each worker gets a different seed
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
||||
# note: float16 would require us to change the code to use a GradScaler
|
||||
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16}[dtype]
|
||||
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||
|
||||
# poor man's data loader, TODO evaluate need for actual DataLoader
|
||||
data_dir = os.path.join('data', dataset)
|
||||
@ -156,7 +164,7 @@ def estimate_loss():
|
||||
losses = torch.zeros(eval_iters)
|
||||
for k in range(eval_iters):
|
||||
X, Y = get_batch(split)
|
||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
with ctx:
|
||||
logits, loss = model(X, Y)
|
||||
losses[k] = loss.item()
|
||||
out[split] = losses.mean()
|
||||
@ -226,7 +234,7 @@ while True:
|
||||
break
|
||||
|
||||
X, Y = get_batch('train')
|
||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
with ctx:
|
||||
logits, loss = model(X, Y)
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
Loading…
Reference in New Issue
Block a user