From b77c2e86d37c525f8c9aa676cf0745e4e524e685 Mon Sep 17 00:00:00 2001 From: Andrej Karpathy Date: Sun, 8 Jan 2023 19:32:13 +0000 Subject: [PATCH] copy pasting what seems to work to bench,sample as well. ty @lantiga --- bench.py | 18 ++++++++++++------ sample.py | 22 +++++++++++++--------- 2 files changed, 25 insertions(+), 15 deletions(-) diff --git a/bench.py b/bench.py index 400d644..5b3f99c 100644 --- a/bench.py +++ b/bench.py @@ -2,23 +2,29 @@ A much shorter version of train.py for benchmarking """ import os +from contextlib import nullcontext import numpy as np import time import torch from model import GPTConfig, GPT # ----------------------------------------------------------------------------- -device = 'cuda' batch_size = 8 block_size = 1024 -compile = True +seed = 1337 +device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. +dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16' +compile = True # use PyTorch 2.0 to compile the model to be faster exec(open('configurator.py').read()) # overrides from command line or config file # ----------------------------------------------------------------------------- -dtype = torch.bfloat16 # todo make configurable +torch.manual_seed(seed) +torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn -torch.manual_seed(1337) +device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast +ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] +ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) # data loading init real_data = True @@ -74,7 +80,7 @@ if profile: for k in range(num_steps): X, Y = get_batch('train') - with torch.autocast(device_type='cuda', dtype=dtype): + with ctx: logits, loss = model(X, Y) optimizer.zero_grad(set_to_none=True) loss.backward() @@ -92,7 +98,7 @@ else: t0 = time.time() for k in range(num_steps): X, Y = get_batch('train') - with torch.autocast(device_type='cuda', dtype=dtype): + with ctx: logits, loss = model(X, Y) optimizer.zero_grad(set_to_none=True) loss.backward() diff --git a/sample.py b/sample.py index 5ccbbcf..0fcf19a 100644 --- a/sample.py +++ b/sample.py @@ -2,20 +2,22 @@ Sample from a trained model """ import os +from contextlib import nullcontext import torch import tiktoken from model import GPTConfig, GPT # ----------------------------------------------------------------------------- out_dir = 'out' -device = 'cuda' -compile = False start = "\n" # or "<|endoftext|>" or whatever you like num_samples = 10 # number of samples to draw max_new_tokens = 500 # number of tokens generated in each sample temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 +device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. +dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16' +compile = False # use PyTorch 2.0 to compile the model to be faster exec(open('configurator.py').read()) # overrides from command line or config file # ----------------------------------------------------------------------------- @@ -23,6 +25,9 @@ torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn +device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast +ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] +ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) # model ckpt_path = os.path.join(out_dir, 'ckpt.pt') @@ -45,11 +50,10 @@ enc = tiktoken.get_encoding("gpt2") start_ids = enc.encode(start, allowed_special={"<|endoftext|>"}) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) -for k in range(num_samples): - - with torch.no_grad(): - with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): +# run generation +with torch.no_grad(): + with ctx: + for k in range(num_samples): y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) - - print(enc.decode(y[0].tolist())) - print('---------------') + print(enc.decode(y[0].tolist())) + print('---------------')