mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
copy pasting what seems to work to bench,sample as well. ty @lantiga
This commit is contained in:
parent
a855d316fd
commit
b77c2e86d3
18
bench.py
18
bench.py
@ -2,23 +2,29 @@
|
|||||||
A much shorter version of train.py for benchmarking
|
A much shorter version of train.py for benchmarking
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
|
from contextlib import nullcontext
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import time
|
||||||
import torch
|
import torch
|
||||||
from model import GPTConfig, GPT
|
from model import GPTConfig, GPT
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
device = 'cuda'
|
|
||||||
batch_size = 8
|
batch_size = 8
|
||||||
block_size = 1024
|
block_size = 1024
|
||||||
compile = True
|
seed = 1337
|
||||||
|
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||||
|
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||||
|
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
dtype = torch.bfloat16 # todo make configurable
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||||
torch.manual_seed(1337)
|
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
||||||
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
||||||
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||||
|
|
||||||
# data loading init
|
# data loading init
|
||||||
real_data = True
|
real_data = True
|
||||||
@ -74,7 +80,7 @@ if profile:
|
|||||||
|
|
||||||
for k in range(num_steps):
|
for k in range(num_steps):
|
||||||
X, Y = get_batch('train')
|
X, Y = get_batch('train')
|
||||||
with torch.autocast(device_type='cuda', dtype=dtype):
|
with ctx:
|
||||||
logits, loss = model(X, Y)
|
logits, loss = model(X, Y)
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
@ -92,7 +98,7 @@ else:
|
|||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
for k in range(num_steps):
|
for k in range(num_steps):
|
||||||
X, Y = get_batch('train')
|
X, Y = get_batch('train')
|
||||||
with torch.autocast(device_type='cuda', dtype=dtype):
|
with ctx:
|
||||||
logits, loss = model(X, Y)
|
logits, loss = model(X, Y)
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
16
sample.py
16
sample.py
@ -2,20 +2,22 @@
|
|||||||
Sample from a trained model
|
Sample from a trained model
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
|
from contextlib import nullcontext
|
||||||
import torch
|
import torch
|
||||||
import tiktoken
|
import tiktoken
|
||||||
from model import GPTConfig, GPT
|
from model import GPTConfig, GPT
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
out_dir = 'out'
|
out_dir = 'out'
|
||||||
device = 'cuda'
|
|
||||||
compile = False
|
|
||||||
start = "\n" # or "<|endoftext|>" or whatever you like
|
start = "\n" # or "<|endoftext|>" or whatever you like
|
||||||
num_samples = 10 # number of samples to draw
|
num_samples = 10 # number of samples to draw
|
||||||
max_new_tokens = 500 # number of tokens generated in each sample
|
max_new_tokens = 500 # number of tokens generated in each sample
|
||||||
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
|
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
|
||||||
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
||||||
seed = 1337
|
seed = 1337
|
||||||
|
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||||
|
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||||
|
compile = False # use PyTorch 2.0 to compile the model to be faster
|
||||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
@ -23,6 +25,9 @@ torch.manual_seed(seed)
|
|||||||
torch.cuda.manual_seed(seed)
|
torch.cuda.manual_seed(seed)
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||||
|
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
||||||
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
||||||
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||||
|
|
||||||
# model
|
# model
|
||||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||||
@ -45,11 +50,10 @@ enc = tiktoken.get_encoding("gpt2")
|
|||||||
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
||||||
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
||||||
|
|
||||||
for k in range(num_samples):
|
# run generation
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
with ctx:
|
||||||
|
for k in range(num_samples):
|
||||||
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
||||||
|
|
||||||
print(enc.decode(y[0].tolist()))
|
print(enc.decode(y[0].tolist()))
|
||||||
print('---------------')
|
print('---------------')
|
||||||
|
Loading…
Reference in New Issue
Block a user