mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 06:00:29 +00:00
copy pasting what seems to work to bench,sample as well. ty @lantiga
This commit is contained in:
parent
a855d316fd
commit
b77c2e86d3
18
bench.py
18
bench.py
@ -2,23 +2,29 @@
|
||||
A much shorter version of train.py for benchmarking
|
||||
"""
|
||||
import os
|
||||
from contextlib import nullcontext
|
||||
import numpy as np
|
||||
import time
|
||||
import torch
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
device = 'cuda'
|
||||
batch_size = 8
|
||||
block_size = 1024
|
||||
compile = True
|
||||
seed = 1337
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
dtype = torch.bfloat16 # todo make configurable
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
torch.manual_seed(1337)
|
||||
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
||||
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
||||
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||
|
||||
# data loading init
|
||||
real_data = True
|
||||
@ -74,7 +80,7 @@ if profile:
|
||||
|
||||
for k in range(num_steps):
|
||||
X, Y = get_batch('train')
|
||||
with torch.autocast(device_type='cuda', dtype=dtype):
|
||||
with ctx:
|
||||
logits, loss = model(X, Y)
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
@ -92,7 +98,7 @@ else:
|
||||
t0 = time.time()
|
||||
for k in range(num_steps):
|
||||
X, Y = get_batch('train')
|
||||
with torch.autocast(device_type='cuda', dtype=dtype):
|
||||
with ctx:
|
||||
logits, loss = model(X, Y)
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
|
22
sample.py
22
sample.py
@ -2,20 +2,22 @@
|
||||
Sample from a trained model
|
||||
"""
|
||||
import os
|
||||
from contextlib import nullcontext
|
||||
import torch
|
||||
import tiktoken
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
out_dir = 'out'
|
||||
device = 'cuda'
|
||||
compile = False
|
||||
start = "\n" # or "<|endoftext|>" or whatever you like
|
||||
num_samples = 10 # number of samples to draw
|
||||
max_new_tokens = 500 # number of tokens generated in each sample
|
||||
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
|
||||
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
||||
seed = 1337
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
compile = False # use PyTorch 2.0 to compile the model to be faster
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
@ -23,6 +25,9 @@ torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
||||
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
||||
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||
|
||||
# model
|
||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||
@ -45,11 +50,10 @@ enc = tiktoken.get_encoding("gpt2")
|
||||
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
||||
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
||||
|
||||
for k in range(num_samples):
|
||||
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
# run generation
|
||||
with torch.no_grad():
|
||||
with ctx:
|
||||
for k in range(num_samples):
|
||||
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
||||
|
||||
print(enc.decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
print(enc.decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
|
Loading…
Reference in New Issue
Block a user