The %q formatter for janet_formatc now expects a Janet, not a JanetString or
JanetSymbol or JanetKeyword.
Also fix some reference counting issues with threads when destroying
threads, which should fix#287's
SIGSEGV. Still fails to send messages sometimes, though.
These additions, along with the change that user signals 0-4 cannot
be resumed, allow delimited continuation semantics, while repsecting
existing forms like `defer`, `with`, `with-vars`, etc.
This should help when redefining certain forms. Will also
not do functional arity checking against nil forms, as that
is the default value when a def doesn't evaluate.
These functions interact with Janet's dynamically scoped
IO functions in a manner that is more useful the file/flush.
We can still redirect to a buffer without changing our code.
This way we can support fewer build configurations. Also, remove
all undefined behavior due to use of memcpy with NULL pointers. GCC
was exploiting this to remove NULL checks in some builds.
This means we can add new properties to abstract types without
breaking old code. We can also make simple abstract types without
needing to add many NULL fields to the type.
This changes the implementation of the `next` function which
is now used to implement each. This let's us iterate over
more types, not just tables and structs.
In some cases, one might want to disable what is currently
SipHash for speed / better security mechansims. For example, using
red black trees for caches rather than hash tables.
The hash key still needs to randomly initialized
for the security advantage, but this patch is a
step closer to avoiding hash based DOS.
Further work may including exposing the raw hash
function for use by abstract types who also choose to
implement hash.
On very long binding names > 256 characters, a buffer overrun would be
trigger in janet_cfuns. Not a huge issue, since this is not really code
that would ever be user facing, but we can fix this.
While C functions are not re-entrant, signaling from a C function
can be used to implement async returns. When resuming a fiber that
signalled from within a C function, the fiber is started after the
instruction that emitted the signal. The resume argument is used
as the return result from the c function.