1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-18 03:04:48 +00:00
hyperrogue/syntetic.cpp

839 lines
23 KiB
C++
Raw Normal View History

2018-08-17 11:29:00 +00:00
namespace hr {
namespace synt {
#define SDEBUG(x) if(debug_geometry) { doindent(); x; fflush(stdout); }
2018-08-17 11:29:00 +00:00
2018-08-19 13:15:47 +00:00
static const int sfPH = 1;
static const int sfLINE = 2;
2018-08-19 16:06:54 +00:00
static const int sfCHESS = 4;
static const int sfTHREE = 8;
2018-08-19 13:15:47 +00:00
2018-08-17 11:29:00 +00:00
// Marek-snub
vector<int> faces = {3, 6, 6, 6};
vector<int> adj = {1, 0, 2, 3};
vector<bool> invert = {false, false, true, false};
2018-08-19 13:15:47 +00:00
vector<int> nflags = {sfPH | sfLINE, 0, 0, 0};
2018-08-19 16:06:54 +00:00
bool have_ph, have_line, have_symmetry, have_chessboard;
2018-08-17 11:29:00 +00:00
int repetition = 1;
int N;
ld euclidean_angle_sum;
vector<int> flags;
2018-08-17 11:29:00 +00:00
vector<vector<pair<int, int>>> adjacent;
vector<vector<pair<ld, ld>>> triangles;
// id of vertex in the syntetic tiling
// odd numbers = reflected tiles
// 0, 2, ..., 2(N-1) = as in the symbol
// 2N = bitruncated tile
short& id_of(heptagon *h) {
return h->zebraval;
}
// which index in id_of's neighbor list does h->move[0] have
short& parent_index_of(heptagon *h) {
return h->emeraldval;
}
// total number of neighbors
int neighbors_of(heptagon *h) {
return isize(triangles[id_of(h)]);
}
ld edgelength;
vector<ld> inradius, circumradius, alphas;
int matches[30][30];
int periods[30];
int tilegroup[30], groupoffset[30], tilegroups;
int gcd(int x, int y) { return x ? gcd(y%x, x) : y < 0 ? -y : y; }
int errors;
string errormsg;
pair<int, int>& get_adj(heptagon *h, int cid);
pair<ld, ld>& get_triangle(heptagon *h, int cid);
pair<ld, ld>& get_triangle(const pair<int, int>& p, int delta = 0);
pair<int, int>& get_adj(const pair<int, int>& p, int delta = 0);
void make_match(int a, int i, int b, int j) {
if(isize(adjacent[a]) != isize(adjacent[b])) {
SDEBUG(printf("(error here)"));
errormsg = XLAT("polygons match incorrectly");
errors++;
}
if(matches[a][b] == -1)
matches[a][b] = j - i, matches[b][a] = i - j;
else
periods[a] = periods[b] = gcd(matches[a][b] - (j-i), periods[a]);
}
2018-08-17 11:29:00 +00:00
void prepare() {
for(int i: faces) if(i >= MAX_EDGE) {
errormsg = XLAT("currently no more than %1 edges", its(MAX_EDGE));
errors++;
return;
}
if(isize(faces) > MAX_EDGE/2) {
errormsg = XLAT("currently no more than %1 faces in vertex", its(MAX_EDGE));
errors++;
return;
}
if(isize(faces) < 3) {
errormsg = XLAT("not enough faces");
errors++;
return;
}
for(int i: faces) if(i < 3) {
errormsg = XLAT("not enough edges");
errors++;
return;
}
errors = 0;
2018-08-17 11:29:00 +00:00
/* build the 'adjacent' table */
N = isize(faces);
int M = 2 * N + 2;
2018-08-17 11:29:00 +00:00
adjacent.clear();
adjacent.resize(M);
have_symmetry = false;
for(int i=0; i<N; i++) if(invert[i]) have_symmetry = true;
for(int i=0; i<M; i++) for(int j=0; j<M; j++) matches[i][j] = i==j ? 0 : -1;
for(int i=0; i<M; i++) periods[i] = i<2*N ? faces[i/2] : N;
2018-08-17 11:29:00 +00:00
for(int i=0; i<N; i++) {
for(int oi=0; oi<1; oi++) {
int at = (i+oi)%N;
int inv = oi;
SDEBUG(printf("vertex ");)
2018-08-17 11:29:00 +00:00
for(int z=0; z<faces[i]; z++) {
SDEBUG(printf("[%d %d] " , at, inv);)
2018-08-17 11:29:00 +00:00
adjacent[2*i+oi].emplace_back(2*N+int(inv), inv ? (2*at+2*N-2) % (2*N) : 2*at);
if(invert[at]) inv ^= 1;
at = adj[at];
if(inv) at = (at+1) % N;
else at = (at+N-1) % N;
}
SDEBUG(printf("-> [%d %d]\n", at, inv);)
2018-08-17 11:29:00 +00:00
}
}
for(int i=0; i<N; i++) {
adjacent[2*N].emplace_back(2*i, 0);
int ai = (i+1) % N;
adjacent[2*N].emplace_back(2*N+int(invert[ai]), (2*adj[ai]+2*N-1) % (2*N));
}
2018-08-17 11:29:00 +00:00
for(int d=0; d<=2*N; d+=2) {
int s = isize(adjacent[d]);
for(int i=0; i<s; i++) {
auto& orig = adjacent[d][s-1-i];
adjacent[d+1].emplace_back(orig.first ^ 1, orig.second);
}
}
for(int d=0; d<M; d++) {
2018-08-17 11:29:00 +00:00
int s = isize(adjacent[d]);
for(int i=0; i<s; i++) {
auto& orig = adjacent[d][i];
if(orig.first & 1) orig.second = isize(adjacent[orig.first]) - 1 - orig.second;
}
}
SDEBUG(
for(int i=0; i<M; i++) {
2018-08-17 11:29:00 +00:00
printf("adjacent %2d:", i);
for(int j=0; j<isize(adjacent[i]); j++) {
auto p = adjacent[i][j];
printf(" (%d,%d)", p.first, p.second);
}
printf("\n");
} )
2018-08-17 11:29:00 +00:00
/* verify all the triangles */
for(int i=0; i<M; i++) {
2018-08-17 11:29:00 +00:00
for(int j=0; j<isize(adjacent[i]); j++) {
int ai = i, aj = j;
SDEBUG( printf("triangle "); )
2018-08-17 11:29:00 +00:00
for(int s=0; s<3; s++) {
SDEBUG( printf("[%d %d] ", ai, aj); fflush(stdout); )
2018-08-17 11:29:00 +00:00
tie(ai, aj) = adjacent[ai][aj];
aj++; if(aj >= isize(adjacent[ai])) aj = 0;
}
SDEBUG( printf("-> [%d %d]\n", ai, aj); )
make_match(i, j, ai, aj);
2018-08-17 11:29:00 +00:00
}
}
for(int i=0; i<2*N; i++) {
for(int j=0; j<isize(adjacent[i]); j++) {
auto aa = make_pair(i, j);
aa = get_adj(aa, 1);
aa = get_adj(aa, 2);
aa = get_adj(aa, 1);
aa = get_adj(aa, 2);
make_match(i, j, aa.first, aa.second);
}
}
for(int i=0; i<M; i++) for(int j=0; j<M; j++) if(matches[i][j] != -1)
for(int l=0; l<M; l++) for(int k=0; k<M; k++) if(matches[j][k] != -1) {
make_match(i, 0, k, matches[i][j] + matches[j][k]);
make_match(i, 0, k, matches[i][j] + matches[j][k] + gcd(periods[i], periods[j]));
}
for(int i=0; i<M; i++) tilegroup[i] = -1;
tilegroups = 0;
for(int i=0; i<M; i+=(have_symmetry?1:2)) if(tilegroup[i] == -1) {
if(periods[i] < 0) periods[i] = -periods[i];
for(int j=0; j<M; j++) if(matches[i][j] != -1)
tilegroup[j] = tilegroups, groupoffset[j] = matches[i][j] % periods[i];
tilegroups++;
}
2018-08-17 11:29:00 +00:00
flags.clear();
flags.resize(M);
for(int i=0; i<M; i++)
for(int j=0; j<2*N; j++)
if(tilegroup[i] == tilegroup[j]) flags[i] |= nflags[j/2];
if(!have_ph) {
if(nonbitrunc) {
for(int i=0; i<M; i++) if(tilegroup[i] == 0) flags[i] |= sfPH;
}
else {
for(int z=2*N; z<2*N+2; z++) flags[z] |= sfPH;
}
}
if(have_symmetry) {
have_chessboard = true;
for(int o=0; o<2; o++)
for(int i=o; i<2*N; i+=2)
for(int j=i+2; j<2*N; j+=4)
if(tilegroup[i] == tilegroup[j])
have_chessboard = false;
for(int i=0; i<N; i+=2)
for(int j=0; j<2*N; j++)
if(tilegroup[j] == tilegroup[i])
flags[j] |= sfCHESS;
}
else {
have_chessboard = N % 2 == 0;
for(int i=0; i<M; i+=4) flags[i] |= sfCHESS;
}
SDEBUG( for(int i=0; i<M; i+=(have_symmetry?1:2)) {
printf("tiling group of %2d: [%2d]%2d+Z%2d\n", i, tilegroup[i], groupoffset[i], periods[i]);
printf("\n");
} )
euclidean_angle_sum = 0;
for(int f: faces) euclidean_angle_sum += (f-2.) / f;
if(euclidean_angle_sum < 1.999999) ginf[gSyntetic].cclass = gcSphere;
else if(euclidean_angle_sum > 2.000001) ginf[gSyntetic].cclass = gcHyperbolic;
2018-08-17 11:29:00 +00:00
else ginf[gSyntetic].cclass = gcEuclid;
SDEBUG( printf("euclidean_angle_sum = %lf\n", double(euclidean_angle_sum)); )
2018-08-17 11:29:00 +00:00
dynamicval<eGeometry> dv(geometry, gSyntetic);
/* compute the geometry */
inradius.resize(N);
circumradius.resize(N);
alphas.resize(N);
ld elmin = 0, elmax = hyperbolic ? 10 : sphere ? M_PI : 1;
for(int p=0; p<100; p++) {
edgelength = (elmin + elmax) / 2;
ld alpha_total = 0;
for(int i=0; i<N; i++) {
ld crmin = 0, crmax = sphere ? M_PI : 10;
for(int q=0; q<100; q++) {
circumradius[i] = (crmin + crmax) / 2;
2018-08-19 14:28:36 +00:00
hyperpoint p1 = xpush0(circumradius[i]);
2018-08-17 11:29:00 +00:00
hyperpoint p2 = spin(2 * M_PI / faces[i]) * p1;
inradius[i] = hdist0(mid(p1, p2));
if(hdist(p1, p2) > edgelength) crmax = circumradius[i];
else crmin = circumradius[i];
}
2018-08-19 14:28:36 +00:00
hyperpoint h = xpush(edgelength/2) * xspinpush0(M_PI/2, inradius[i]);
2018-08-17 11:29:00 +00:00
alphas[i] = atan2(-h[1], h[0]);
alpha_total += alphas[i];
}
// printf("el = %lf alpha = %lf\n", double(edgelength), double(alpha_total));
if(sphere ^ (alpha_total > M_PI)) elmin = edgelength;
else elmax = edgelength;
if(euclid) break;
}
SDEBUG( printf("computed edgelength = %lf\n", double(edgelength)); )
2018-08-17 11:29:00 +00:00
triangles.clear();
triangles.resize(M);
2018-08-17 11:29:00 +00:00
for(int i=0; i<N; i++) for(int j=0; j<2; j++)
for(int k=0; k<faces[i]; k++)
triangles[2*i+j].emplace_back(2*M_PI/faces[i], circumradius[i]);
for(int k=0; k<N; k++) {
triangles[2*N].emplace_back(alphas[k], circumradius[k]);
triangles[2*N].emplace_back(alphas[(k+1)%N], edgelength);
triangles[2*N+1].emplace_back(alphas[N-1-k], edgelength);
triangles[2*N+1].emplace_back(alphas[N-1-k], circumradius[N-1-k]);
}
for(auto& ts: triangles) {
ld total = 0;
for(auto& t: ts) tie(t.first, total) = make_pair(total, total + t.first);
// printf("total = %lf\n", double(total));
}
SDEBUG( for(auto& ts: triangles) {
2018-08-17 11:29:00 +00:00
printf("T");
for(auto& t: ts) printf(" %lf@%lf", double(t.first), double(t.second));
printf("\n");
} )
2018-08-17 11:29:00 +00:00
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
map<heptagon*, pair<heptagon*, transmatrix>> syntetic_gmatrix;
hrmap *current_altmap;
struct hrmap_syntetic : hrmap {
heptagon *origin;
heptagon *getOrigin() { return origin; }
hrmap_syntetic() {
origin = new heptagon;
origin->s = hsOrigin;
origin->emeraldval = 0;
origin->zebraval = 0;
origin->fiftyval = 0;
origin->fieldval = 0;
origin->rval0 = origin->rval1 = 0;
origin->cdata = NULL;
origin->c.clear();
origin->alt = NULL;
origin->distance = 0;
parent_index_of(origin) = 0;
id_of(origin) = 0;
origin->c7 = newCell(isize(adjacent[0]), origin);
heptagon *alt = NULL;
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = new heptagon;
alt->s = hsOrigin;
alt->emeraldval = 0;
alt->zebraval = 0;
alt->c.clear();
alt->distance = 0;
alt->c7 = NULL;
alt->alt = alt;
alt->cdata = NULL;
current_altmap = newAltMap(alt);
}
transmatrix T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * Id;
syntetic_gmatrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
base_distlimit = 0;
celllister cl(origin->c7, 1000, 200, NULL);
base_distlimit = cl.dists.back();
if(sphere) base_distlimit = 15;
2018-08-17 11:29:00 +00:00
}
~hrmap_syntetic() {
clearfrom(origin);
altmap.clear();
syntetic_gmatrix.clear();
if(current_altmap) {
dynamicval<eGeometry> g(geometry, gNormal);
delete current_altmap;
current_altmap = NULL;
}
}
void verify() { }
};
2018-08-17 11:29:00 +00:00
hrmap *new_map() { return new hrmap_syntetic; }
transmatrix adjcell_matrix(heptagon *h, int d);
2018-08-17 11:29:00 +00:00
heptagon *build_child(heptagon *parent, int d, int id, int pindex) {
indenter ind;
auto h = buildHeptagon1(new heptagon, parent, d, hstate(1), 0);
SDEBUG( printf("NEW %p.%d ~ %p.0\n", parent, d, h); )
2018-08-17 11:29:00 +00:00
id_of(h) = id;
parent_index_of(h) = pindex;
int nei = neighbors_of(h);
h->c7 = newCell(nei, h);
h->distance = parent->distance + 1;
2018-08-17 11:29:00 +00:00
return h;
}
void connectHeptagons(heptagon *h, int i, heptspin hs) {
SDEBUG( printf("OLD %p.%d ~ %p.%d\n", h, i, hs.at, hs.spin); )
if(h->move(i) == hs.at && h->c.spin(i) == hs.spin) {
2018-08-17 11:29:00 +00:00
SDEBUG( printf("WARNING: already connected\n"); )
return;
}
if(h->move(i)) {
SDEBUG( printf("ERROR: already connected left\n"); )
exit(1);
2018-08-17 11:29:00 +00:00
}
if(hs.peek()) {
SDEBUG( printf("ERROR: already connected right\n"); )
exit(1);
2018-08-17 11:29:00 +00:00
}
h->c.connect(i, hs);
2018-08-17 11:29:00 +00:00
auto p = get_adj(h, i);
if(tilegroup[p.first] != tilegroup[id_of(hs.at)])
printf("should merge %d %d\n", p.first, id_of(hs.at));
// heptagon *hnew = build_child(h, d, get_adj(h, d).first, get_adj(h, d).second);
}
2018-08-17 11:29:00 +00:00
void create_adjacent(heptagon *h, int d) {
SDEBUG( printf("%p.%d ~ ?\n", h, d); )
auto& t1 = get_triangle(h, d);
// * spin(-tri[id][pi+i].first) * xpush(t.second) * pispin * spin(tri[id'][p'+d'].first)
auto& p = syntetic_gmatrix[h];
heptagon *alt = p.first;
transmatrix T = p.second * spin(-t1.first) * xpush(t1.second);
2018-08-17 11:29:00 +00:00
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
virtualRebaseSimple(alt, T);
2018-08-17 11:29:00 +00:00
}
if(euclid)
alt = encodeId(pair_to_vec(int(T[0][2]), int(T[1][2])));
SDEBUG( printf("look for: %p / %s\n", alt, display(T * C0)); )
for(auto& p: altmap[alt]) if(intval(p.second * C0, T * C0) < 1e-6) {
SDEBUG( printf("cell found: %p\n", p.first); )
for(int d2=0; d2<p.first->c7->type; d2++) {
auto& t2 = get_triangle(p.first, d2);
transmatrix T1 = T * spin(M_PI + t2.first);
2018-08-19 14:28:36 +00:00
SDEBUG( printf("compare: %s", display(T1 * xpush0(1))); )
SDEBUG( printf(":: %s\n", display(p.second * xpush0(1))); )
if(intval(T1 * xpush0(1), p.second * xpush0(1)) < 1e-6) {
connectHeptagons(h, d, heptspin(p.first, d2));
2018-08-17 11:29:00 +00:00
return;
}
}
SDEBUG( printf("but rotation not found\n"));
2018-08-17 11:29:00 +00:00
}
auto& t2 = get_triangle(get_adj(h, d));
transmatrix T1 = T * spin(M_PI + t2.first);
2018-08-18 22:39:29 +00:00
fixmatrix(T1);
heptagon *hnew = build_child(h, d, get_adj(h, d).first, get_adj(h, d).second);
altmap[alt].emplace_back(hnew, T1);
syntetic_gmatrix[hnew] = make_pair(alt, T1);
2018-08-17 11:29:00 +00:00
}
set<heptagon*> visited;
queue<pair<heptagon*, transmatrix>> drawqueue;
void enqueue(heptagon *h, const transmatrix& T) {
if(visited.count(h)) { return; }
visited.insert(h);
drawqueue.emplace(h, T);
}
pair<ld, ld>& get_triangle(heptagon *h, int cid) {
return triangles[id_of(h)][(parent_index_of(h) + cid + MODFIXER) % neighbors_of(h)];
}
pair<int, int>& get_adj(heptagon *h, int cid) {
return adjacent[id_of(h)][(parent_index_of(h) + cid + MODFIXER) % neighbors_of(h)];
}
pair<int, int>& get_adj(const pair<int, int>& p, int delta) {
return adjacent[p.first][(p.second + delta + MODFIXER) % isize(adjacent[p.first])];
}
pair<ld, ld>& get_triangle(const pair<int, int>& p, int delta) {
return triangles[p.first][(p.second + delta + MODFIXER) % isize(adjacent[p.first])];
}
2018-08-17 11:29:00 +00:00
transmatrix adjcell_matrix(heptagon *h, int d) {
auto& t1 = get_triangle(h, d);
2018-08-17 11:29:00 +00:00
heptagon *h2 = h->move(d);
2018-08-17 11:29:00 +00:00
int d2 = h->c.spin(d);
auto& t2 = get_triangle(h2, d2);
2018-08-17 11:29:00 +00:00
return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first);
}
void draw() {
visited.clear();
enqueue(viewctr.at, cview());
2018-08-17 11:29:00 +00:00
int idx = 0;
while(!drawqueue.empty()) {
auto p = drawqueue.front();
drawqueue.pop();
heptagon *h = p.first;
transmatrix V = p.second;
int id = id_of(h);
int S = isize(triangles[id]);
if(!nonbitrunc || id < 2*N) {
if(!dodrawcell(h->c7)) continue;
drawcell(h->c7, V, 0, false);
}
for(int i=0; i<S; i++) {
h->cmove(i);
if(nonbitrunc && id >= 2*N && h->move(i) && id_of(h->move(i)) >= 2*N) continue;
enqueue(h->move(i), V * adjcell_matrix(h, i));
2018-08-17 11:29:00 +00:00
}
idx++;
}
}
transmatrix relative_matrix(heptagon *h2, heptagon *h1) {
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7];
transmatrix gm = Id, where = Id;
while(h1 != h2) {
for(int i=0; i<neighbors_of(h1); i++) if(h1->move(i) == h2) {
2018-08-17 11:29:00 +00:00
return gm * adjcell_matrix(h1, i) * where;
}
else if(h1->distance > h2->distance) {
gm = gm * adjcell_matrix(h1, 0);
h1 = h1->move(0);
2018-08-17 11:29:00 +00:00
}
else {
where = inverse(adjcell_matrix(h2, 0)) * where;
h2 = h2->move(0);
2018-08-17 11:29:00 +00:00
}
}
return gm * where;
}
int fix(heptagon *h, int spin) {
int type = isize(adjacent[id_of(h)]);
spin %= type;
if(spin < 0) spin += type;
return spin;
}
void parse_symbol(string s) {
int at = 0;
auto peek = [&] () { if(at == isize(s)) return char(0); else return s[at]; };
auto isnumber = [&] () { char p = peek(); return p >= '0' && p <= '9'; };
auto read_number = [&] () { int result = 0; while(isnumber()) result = 10 * result + peek() - '0', at++; return result; };
faces.clear(); nflags.clear();
have_line = false;
have_ph = false;
2018-08-17 11:29:00 +00:00
while(true) {
if(peek() == ')' || peek() == '^' || (peek() == '(' && isize(faces)) || peek() == 0) break;
else if((peek() == 'L' || peek() == 'l') && faces.size())
nflags.back() |= sfLINE, have_line = true, at++;
else if((peek() == 'H' || peek() == 'h') && faces.size())
nflags.back() |= sfPH, have_ph = true, at++;
else if(isnumber()) faces.push_back(read_number()), nflags.push_back(0);
2018-08-17 11:29:00 +00:00
else at++;
}
repetition = 1;
N = isize(faces);
invert.clear(); invert.resize(N, true);
2018-08-17 11:29:00 +00:00
adj.clear(); adj.resize(N, 0); for(int i=0; i<N; i++) adj[i] = i;
while(peek() != 0) {
if(peek() == '^') at++, repetition = read_number();
else if(peek() == '(') {
at++; int a = read_number(); while(!isnumber() && !among(peek(), '(', '[', ')',']', 0)) at++;
if(isnumber()) { int b = read_number(); adj[a] = b; adj[b] = a; invert[a] = invert[b] = false; }
else { invert[a] = false; }
2018-08-17 11:29:00 +00:00
}
else if(peek() == '[') {
at++; int a = read_number(); while(!isnumber() && !among(peek(), '(', '[', ')',']', 0)) at++;
if(isnumber()) { int b = read_number(); adj[a] = b; adj[b] = a; invert[a] = invert[b] = true; }
else { invert[a] = true; }
}
else at++;
}
prepare();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-symbol")) {
targetgeometry = gSyntetic;
if(targetgeometry != geometry)
stop_game_and_switch_mode(rg::geometry);
showstartmenu = false;
shift(); parse_symbol(args());
}
else if(argis("-dgeom")) debug_geometry = true;
2018-08-17 11:29:00 +00:00
else return 1;
return 0;
}
#endif
#if CAP_COMMANDLINE
auto hook =
addHook(hooks_args, 100, readArgs);
2018-08-17 11:29:00 +00:00
#endif
int support_threecolor() {
if(nonbitrunc)
return
(isize(faces) == 3 && faces[0] % 2 == 0 && faces[1] % 2 == 0 && faces[2] % 2 == 0 && tilegroup[N*2] == 3) ? 2 :
tilegroup[N*2] > 1 ? 1 :
0;
for(int i: faces) if(faces[i] % 2) return tilegroup[N*2] > 1 ? 1 : 0;
return 2;
}
int support_graveyard() {
if(!nonbitrunc) return 2;
return
isize(synt::faces) == 3 && synt::faces[0] % 2 == 0 ? 2 :
synt::have_ph ? 1 :
0;
}
2018-08-19 13:15:47 +00:00
bool support_chessboard() {
return 0;
}
bool pseudohept(int id) {
return flags[id] & synt::sfPH;
}
2018-08-19 16:06:54 +00:00
bool chessvalue(cell *c) {
return flags[id_of(c->master)] & synt::sfCHESS;
}
bool linespattern(cell *c) {
return flags[id_of(c->master)] & synt::sfLINE;
}
int threecolor(int id) {
if(nonbitrunc)
return tilegroup[id];
else {
if(support_threecolor() == 2) return id < N * 2 ? (id&1) : 2;
return tilegroup[id];
}
}
vector<string> samples = {
/* Euclidean */
"(3,3,3,3,3,3)",
"(4,4,4,4)",
"(6,6,6)",
"(8,8,4)",
"(4,6,12)",
"(6,4,3,4)",
"(3,6,3,6)",
"(3,12,12)",
"(4,4,3L,3L,3L)[3,4]",
"(3,3,3,3,6)(1,2)(0,4)(3)",
"(3,3,4,3,4)(0,4)(1)(2,3)",
/* Platonic */
"(3,3,3)",
"(3,3,3,3)",
"(3,3,3,3,3)",
"(4,4,4)",
"(5,5,5)",
/* Archimedean solids */
"(3,6,6)",
"(3,4,3,4)",
"(3,8,8)",
"(4,6,6)",
"(3,4,4,4)",
"(4,6,8)",
"(3,3,3,3,4)(1,2)(0,4)(3)",
"(3,5,3,5)",
"(3,10,10)",
"(5,6,6)",
"(3,4,5,4)",
"(4,6,10)",
"(3,3,3,3,5)(1,2)(0,4)(3)",
/* prisms */
"(4,4,3)",
"(4,4,5)",
"(4,4,6)",
"(4,4,7)",
/* sample antiprisms */
"(3,3,3,4)(1)(2)",
"(3,3,3,5)(1)(2)",
"(3,3,3,6)(1)(2)",
"(3,3,3,7)(1)(2)",
/* hyperbolic ones */
"(4,4,4,4,4)",
"(5,5,5,5)",
"(3,3,3,3,7)(1,2)(0,4)(3)",
"(3HL,6,6,6)(1,0)[2](3)",
"(3,4,4,4,4)",
"(3,4,4,4,4) (0 1)[2 3](4)",
"(3,4,4,4,4) (0 1)(2)(3)(4)",
"(6,6,3,3,3) (0 2)(1)(3)(4)",
"(5,3,5,3,3) (0 1)(2 3)(4)",
"(4,3,3,3,3,3) (0 1)(2 3)(4 5)",
"(3,5,5,5,5,5) (0 1)[2 3](4)(5)",
"(3,5,5,5,5,5) (0 1)(2 4)(3 5)",
"(3,5,5,5,5,5) (0 1)(2 4)[3 5]",
"(3,5,5,5,5,5) (0 1)[2 4](3)(5)",
"(3,5,5,5,5,5) (0 1)(2)(3)(4)(5)",
};
int lastsample = 0;
struct prepared_sample {
string s;
ld angle_sum;
int flags;
};
vector<prepared_sample> prepsamples;
int spos = 0;
string current_symbol;
string active_symbol;
bool manual_edit;
void show() {
if(lastsample < isize(samples) && geometry != gSyntetic) {
string s = samples[lastsample++];
parse_symbol(s);
if(errors) {
printf("WARNING: %d errors on %s\n", errors, s.c_str());
}
else {
prepared_sample ps;
ps.s = s;
ps.flags = 0;
ps.angle_sum = euclidean_angle_sum * 180;
if(support_graveyard()) ps.flags |= sfPH;
if(support_threecolor()) ps.flags |= sfTHREE;
if(support_chessboard()) ps.flags |= sfCHESS;
prepsamples.push_back(ps);
}
}
sort(prepsamples.begin(), prepsamples.end(), [] (prepared_sample& s1, prepared_sample& s2) {
if(s1.angle_sum < s2.angle_sum - 1e-6) return true;
if(s2.angle_sum < s1.angle_sum - 1e-6) return false;
return s1.s < s2.s;
});
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(0);
dialog::init(XLAT("Archimedean tilings"));
if(current_symbol == "")
dialog::addBreak(100);
else
dialog::addSelItem("edit", current_symbol, '/');
dialog::add_action([] () {
manual_edit = !manual_edit;
if(manual_edit) active_symbol = current_symbol;
if(!manual_edit) {
parse_symbol(current_symbol);
if(errors) parse_symbol(current_symbol = active_symbol);
else {
stop_game();
need_reset_geometry = true;
if(geometry != gSyntetic) targetgeometry = gSyntetic, stop_game_and_switch_mode(rg::geometry);
nonbitrunc = true; need_reset_geometry = true;
start_game();
}
}
});
dialog::addBreak(100);
if(!manual_edit) {
for(int i=0; i<10; i++) {
int j = i + spos;
if(j >= isize(prepsamples)) continue;
auto &ps = prepsamples[j];
dialog::addSelItem(ps.s, fts(ps.angle_sum) + "°", 'a' + i);
dialog::add_action([&] () {
stop_game();
current_symbol = ps.s;
if(geometry != gSyntetic) targetgeometry = gSyntetic, stop_game_and_switch_mode(rg::geometry);
nonbitrunc = true; need_reset_geometry = true;
parse_symbol(current_symbol);
start_game();
});
}
dialog::addItem(XLAT("next page"), '-');
dialog::add_action([] () {
if(spos + 10 >= isize(prepsamples))
spos = 0;
else spos += 10;
});
}
dialog::addHelp();
dialog::addBack();
dialog::display();
2018-08-17 11:29:00 +00:00
keyhandler = [] (int sym, int uni) {
if(manual_edit && sym == SDLK_RETURN) sym = uni = '/';
dialog::handleNavigation(sym, uni);
if(manual_edit && uni == 8 && current_symbol != "") {
current_symbol = current_symbol.substr(0, isize(current_symbol) - 1);
return;
}
if(manual_edit && uni >= 32 && uni < 128) {
current_symbol += uni;
return;
}
if(doexiton(sym, uni)) popScreen();
};
}
}
}