gnss-sdr/src/algorithms/signal_source/adapters/ad9361_fpga_signal_source.cc

869 lines
39 KiB
C++

/*!
* \file ad9361_fpga_signal_source.cc
* \brief signal source for Analog Devices front-end AD9361 connected directly
* to FPGA accelerators.
* This source implements only the AD9361 control. It is NOT compatible with
* conventional SDR acquisition and tracking blocks.
* Please use the fmcomms2 source if conventional SDR acquisition and tracking
* is selected in the configuration file.
* \authors <ul>
* <li> Javier Arribas, jarribas(at)cttc.es
* <li> Marc Majoral, mmajoral(at)cttc.es
* </ul>
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "ad9361_fpga_signal_source.h"
#include "GPS_L1_CA.h"
#include "GPS_L5.h"
#include "ad9361_manager.h"
#include "command_event.h"
#include "configuration_interface.h"
#include "gnss_sdr_flags.h"
#include "gnss_sdr_string_literals.h"
#include "uio_fpga.h"
#include <glog/logging.h>
#include <iio.h>
#include <algorithm> // for std::max
#include <chrono> // for std::chrono
#include <cmath> // for std::floor
#include <exception> // for std::exception
#include <fcntl.h> // for open, O_WRONLY
#include <fstream> // for std::ifstream
#include <iomanip> // for std::setprecision
#include <iostream> // for std::cout
#include <unistd.h> // for write
#include <vector> // fr std::vector
using namespace std::string_literals;
Ad9361FpgaSignalSource::Ad9361FpgaSignalSource(const ConfigurationInterface *configuration,
const std::string &role, unsigned int in_stream, unsigned int out_stream,
Concurrent_Queue<pmt::pmt_t> *queue __attribute__((unused)))
: SignalSourceBase(configuration, role, "Ad9361_Fpga_Signal_Source"s),
queue_(queue),
gain_mode_rx1_(configuration->property(role + ".gain_mode_rx1", default_gain_mode)),
gain_mode_rx2_(configuration->property(role + ".gain_mode_rx2", default_gain_mode)),
rf_port_select_(configuration->property(role + ".rf_port_select", default_rf_port_select)),
filter_filename_(configuration->property(role + ".filter_filename", filter_file_)),
filename0_(configuration->property(role + ".filename", empty_string)),
rf_gain_rx1_(configuration->property(role + ".gain_rx1", default_manual_gain_rx1)),
rf_gain_rx2_(configuration->property(role + ".gain_rx2", default_manual_gain_rx2)),
scale_dds_dbfs_(configuration->property(role + ".scale_dds_dbfs", -3.0)),
phase_dds_deg_(configuration->property(role + ".phase_dds_deg", 0.0)),
tx_attenuation_db_(configuration->property(role + ".tx_attenuation_db", default_tx_attenuation_db)),
freq0_(configuration->property(role + ".freq", 0)),
freq1_(configuration->property(role + ".freq1", static_cast<uint64_t>(GPS_L5_FREQ_HZ))),
sample_rate_(configuration->property(role + ".sampling_frequency", default_bandwidth)),
bandwidth_(configuration->property(role + ".bandwidth", default_bandwidth)),
samples_to_skip_(0),
samples_(configuration->property(role + ".samples", static_cast<int64_t>(0))),
freq_dds_tx_hz_(configuration->property(role + ".freq_dds_tx_hz", uint64_t(10000))),
freq_rf_tx_hz_(configuration->property(role + ".freq_rf_tx_hz", static_cast<uint64_t>(GPS_L1_FREQ_HZ - GPS_L5_FREQ_HZ - freq_dds_tx_hz_))),
tx_bandwidth_(configuration->property(role + ".tx_bandwidth", static_cast<uint64_t>(500000))),
Fpass_(configuration->property(role + ".Fpass", static_cast<float>(0.0))),
Fstop_(configuration->property(role + ".Fstop", static_cast<float>(0.0))),
num_input_files_(1),
dma_buff_offset_pos_(0),
in_stream_(in_stream),
out_stream_(out_stream),
switch_position_(configuration->property(role + ".switch_position", 0)),
item_size_(sizeof(int8_t)),
enable_dds_lo_(configuration->property(role + ".enable_dds_lo", false)),
filter_auto_(configuration->property(role + ".filter_auto", false)),
quadrature_(configuration->property(role + ".quadrature", true)),
rf_dc_(configuration->property(role + ".rf_dc", true)),
bb_dc_(configuration->property(role + ".bb_dc", true)),
rx1_enable_(configuration->property(role + ".rx1_enable", true)),
rx2_enable_(configuration->property(role + ".rx2_enable", true)),
enable_DMA_(false),
enable_dynamic_bit_selection_(configuration->property(role + ".enable_dynamic_bit_selection", true)),
enable_ovf_check_buffer_monitor_active_(false),
dump_(configuration->property(role + ".dump", false)),
rf_shutdown_(configuration->property(role + ".rf_shutdown", FLAGS_rf_shutdown)),
repeat_(configuration->property(role + ".repeat", false))
{
const double seconds_to_skip = configuration->property(role + ".seconds_to_skip", 0.0);
const size_t header_size = configuration->property(role + ".header_size", 0);
const bool enable_rx1_band((configuration->property("Channels_1C.count", 0) > 0) ||
(configuration->property("Channels_1B.count", 0) > 0));
const bool enable_rx2_band((configuration->property("Channels_L2.count", 0) > 0) ||
(configuration->property("Channels_L5.count", 0) > 0) ||
(configuration->property("Channels_5X.count", 0) > 0));
const uint32_t num_freq_bands = ((enable_rx1_band == true) and (enable_rx2_band == true)) ? 2 : 1;
if (freq0_ == 0)
{
// use ".freq0"
freq0_ = configuration->property(role + ".freq0", static_cast<uint64_t>(GPS_L1_FREQ_HZ));
}
if (filter_auto_)
{
filter_source_ = configuration->property(role + ".filter_source", std::string("Auto"));
}
else
{
filter_source_ = configuration->property(role + ".filter_source", std::string("Off"));
}
// override value with commandline flag, if present
if (FLAGS_signal_source != "-")
{
filename0_ = FLAGS_signal_source;
}
if (FLAGS_s != "-")
{
filename0_ = FLAGS_s;
}
if (filename0_.empty())
{
num_input_files_ = 2;
filename0_ = configuration->property(role + ".filename0", empty_string);
filename1_ = configuration->property(role + ".filename1", empty_string);
}
// if only one input file is specified in the configuration file then:
// if there is at least one channel assigned to frequency band 1 then the DMA transfers the samples to the L1 frequency band channels
// otherwise the DMA transfers the samples to the L2/L5 frequency band channels
// if more than one input file are specified then the DMA transfer the samples to both the L1 and the L2/L5 frequency channels.
if (filename1_.empty())
{
if (enable_rx1_band)
{
dma_buff_offset_pos_ = 2;
}
}
else
{
dma_buff_offset_pos_ = 2;
}
if (seconds_to_skip > 0)
{
samples_to_skip_ = static_cast<uint64_t>(seconds_to_skip * sample_rate_) * 2;
}
if (header_size > 0)
{
samples_to_skip_ += header_size;
}
std::string device_io_name; // Switch UIO device file
// find the uio device file corresponding to the switch.
if (find_uio_dev_file_name(device_io_name, switch_device_name, 0) < 0)
{
std::cerr << "Cannot find the FPGA uio device file corresponding to device name " << switch_device_name << '\n';
return;
}
if (switch_position_ != 0 && switch_position_ != 2)
{
std::cout << "SignalSource.switch_position configuration parameter must be either 0: read from file(s) via DMA, or 2: read from AD9361\n";
std::cout << "SignalSource.switch_position configuration parameter set to its default value switch_position=0 - read from file(s)\n";
switch_position_ = 0;
}
switch_fpga = std::make_shared<Fpga_Switch>(device_io_name);
switch_fpga->set_switch_position(switch_position_);
if (switch_position_ == 0) // Inject file(s) via DMA
{
enable_DMA_ = true;
if (samples_ == 0) // read all file
{
/*!
* BUG workaround: The GNU Radio file source does not stop the receiver after reaching the End of File.
* A possible solution is to compute the file length in samples using file size, excluding the last 100 milliseconds, and enable always the
* valve block
*/
std::ifstream file(filename0_.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
std::ifstream::pos_type size;
if (file.is_open())
{
size = file.tellg();
DLOG(INFO) << "Total samples in the file= " << floor(static_cast<double>(size) / static_cast<double>(item_size_));
}
else
{
std::cerr << "SignalSource: Unable to open the samples file " << filename0_.c_str() << '\n';
return;
}
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(16);
std::cout << "Processing file " << filename0_ << ", which contains " << static_cast<double>(size) << " [bytes]\n";
std::cout.precision(ss);
if (size > 0)
{
const uint64_t bytes_to_skip = samples_to_skip_ * item_size_;
const uint64_t bytes_to_process = static_cast<uint64_t>(size) - bytes_to_skip;
samples_ = floor(static_cast<double>(bytes_to_process) / static_cast<double>(item_size_) - ceil(0.002 * static_cast<double>(sample_rate_))); // process all the samples available in the file excluding at least the last 1 ms
}
if (!filename1_.empty())
{
std::ifstream file(filename1_.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
std::ifstream::pos_type size;
if (file.is_open())
{
size = file.tellg();
DLOG(INFO) << "Total samples in the file= " << floor(static_cast<double>(size) / static_cast<double>(item_size_));
}
else
{
std::cerr << "SignalSource: Unable to open the samples file " << filename1_.c_str() << '\n';
return;
}
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(16);
std::cout << "Processing file " << filename1_ << ", which contains " << static_cast<double>(size) << " [bytes]\n";
std::cout.precision(ss);
int64_t samples_rx2 = 0;
if (size > 0)
{
const uint64_t bytes_to_skip = samples_to_skip_ * item_size_;
const uint64_t bytes_to_process = static_cast<uint64_t>(size) - bytes_to_skip;
samples_rx2 = floor(static_cast<double>(bytes_to_process) / static_cast<double>(item_size_) - ceil(0.002 * static_cast<double>(sample_rate_))); // process all the samples available in the file excluding at least the last 1 ms
}
samples_ = std::min(samples_, samples_rx2);
}
}
CHECK(samples_ > 0) << "File does not contain enough samples to process.";
double signal_duration_s = (static_cast<double>(samples_) * (1 / static_cast<double>(sample_rate_))) / 2.0;
DLOG(INFO) << "Total number samples to be processed= " << samples_ << " GNSS signal duration= " << signal_duration_s << " [s]";
std::cout << "GNSS signal recorded time to be processed: " << signal_duration_s << " [s]\n";
if (filename1_.empty())
{
DLOG(INFO) << "File source filename " << filename0_;
}
else
{
DLOG(INFO) << "File source filename rx1 " << filename0_;
DLOG(INFO) << "File source filename rx2 " << filename1_;
}
DLOG(INFO) << "Samples " << samples_;
DLOG(INFO) << "Sampling frequency " << sample_rate_;
DLOG(INFO) << "Item type " << std::string("ibyte");
DLOG(INFO) << "Item size " << item_size_;
DLOG(INFO) << "Repeat " << repeat_;
}
if (switch_position_ == 2) // Real-time via AD9361
{
std::cout << "Sample rate: " << sample_rate_ << " Sps\n";
enable_ovf_check_buffer_monitor_active_ = false; // check buffer overflow and buffer monitor disabled by default
// some basic checks
if ((rf_port_select_ != "A_BALANCED") && (rf_port_select_ != "B_BALANCED") && (rf_port_select_ != "A_N") && (rf_port_select_ != "B_N") && (rf_port_select_ != "B_P") && (rf_port_select_ != "C_N") && (rf_port_select_ != "C_P") && (rf_port_select_ != "TX_MONITOR1") && (rf_port_select_ != "TX_MONITOR2") && (rf_port_select_ != "TX_MONITOR1_2"))
{
std::cout << "Configuration parameter rf_port_select should take one of these values:\n";
std::cout << " A_BALANCED, B_BALANCED, A_N, B_N, B_P, C_N, C_P, TX_MONITOR1, TX_MONITOR2, TX_MONITOR1_2\n";
std::cout << "Error: provided value rf_port_select=" << rf_port_select_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value rf_port_select=" << default_rf_port_select << '\n';
rf_port_select_ = default_rf_port_select;
LOG(WARNING) << "Invalid configuration value for rf_port_select parameter. Set to rf_port_select=" << default_rf_port_select;
}
if ((gain_mode_rx1_ != "manual") && (gain_mode_rx1_ != "slow_attack") && (gain_mode_rx1_ != "fast_attack") && (gain_mode_rx1_ != "hybrid"))
{
std::cout << "Configuration parameter gain_mode_rx1 should take one of these values:\n";
std::cout << " manual, slow_attack, fast_attack, hybrid\n";
std::cout << "Error: provided value gain_mode_rx1=" << gain_mode_rx1_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value gain_mode_rx1=" << default_gain_mode << '\n';
gain_mode_rx1_ = default_gain_mode;
LOG(WARNING) << "Invalid configuration value for gain_mode_rx1 parameter. Set to gain_mode_rx1=" << default_gain_mode;
}
if ((gain_mode_rx2_ != "manual") && (gain_mode_rx2_ != "slow_attack") && (gain_mode_rx2_ != "fast_attack") && (gain_mode_rx2_ != "hybrid"))
{
std::cout << "Configuration parameter gain_mode_rx2 should take one of these values:\n";
std::cout << " manual, slow_attack, fast_attack, hybrid\n";
std::cout << "Error: provided value gain_mode_rx2=" << gain_mode_rx2_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value gain_mode_rx2=" << default_gain_mode << '\n';
gain_mode_rx2_ = default_gain_mode;
LOG(WARNING) << "Invalid configuration value for gain_mode_rx2 parameter. Set to gain_mode_rx2=" << default_gain_mode;
}
if (gain_mode_rx1_ == "manual")
{
if (rf_gain_rx1_ > 73.0 || rf_gain_rx1_ < -1.0)
{
std::cout << "Configuration parameter rf_gain_rx1 should take values between -1.0 and 73 dB\n";
std::cout << "Error: provided value rf_gain_rx1=" << rf_gain_rx1_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value rf_gain_rx1=" << default_manual_gain_rx1 << '\n';
rf_gain_rx1_ = default_manual_gain_rx1;
LOG(WARNING) << "Invalid configuration value for rf_gain_rx1 parameter. Set to rf_gain_rx1=" << default_manual_gain_rx1;
}
}
if (gain_mode_rx2_ == "manual")
{
if (rf_gain_rx2_ > 73.0 || rf_gain_rx2_ < -1.0)
{
std::cout << "Configuration parameter rf_gain_rx2 should take values between -1.0 and 73 dB\n";
std::cout << "Error: provided value rf_gain_rx2=" << rf_gain_rx2_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value rf_gain_rx2=" << default_manual_gain_rx2 << '\n';
rf_gain_rx2_ = default_manual_gain_rx2;
LOG(WARNING) << "Invalid configuration value for rf_gain_rx2 parameter. Set to rf_gain_rx2=" << default_manual_gain_rx2;
}
}
if ((filter_source_ != "Off") && (filter_source_ != "Auto") && (filter_source_ != "File") && (filter_source_ != "Design"))
{
std::cout << "Configuration parameter filter_source should take one of these values:\n";
std::cout << " Off: Disable filter\n";
std::cout << " Auto: Use auto-generated filters\n";
std::cout << " File: User-provided filter in filter_filename parameter\n";
std::cout << " Design: Create filter from Fpass, Fstop, sampling_frequency and bandwidth parameters\n";
std::cout << "Error: provided value filter_source=" << filter_source_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value filter_source=Off\n";
filter_source_ = std::string("Off");
LOG(WARNING) << "Invalid configuration value for filter_source parameter. Set to filter_source=Off";
}
if (bandwidth_ < 200000 || bandwidth_ > 56000000)
{
std::cout << "Configuration parameter bandwidth should take values between 200000 and 56000000 Hz\n";
std::cout << "Error: provided value bandwidth=" << bandwidth_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value bandwidth=" << default_bandwidth << '\n';
bandwidth_ = default_bandwidth;
LOG(WARNING) << "Invalid configuration value for bandwidth parameter. Set to bandwidth=" << default_bandwidth;
}
std::cout << "LO frequency : " << freq0_ << " Hz\n";
try
{
config_ad9361_rx_local(bandwidth_,
sample_rate_,
freq0_,
freq1_,
rf_port_select_,
rx1_enable_,
rx2_enable_,
gain_mode_rx1_,
gain_mode_rx2_,
rf_gain_rx1_,
rf_gain_rx2_,
quadrature_,
rf_dc_,
bb_dc_,
filter_source_,
filter_filename_,
Fpass_,
Fstop_);
}
catch (const std::runtime_error &e)
{
std::cerr << "Exception cached when configuring the RX chain: " << e.what() << '\n';
return;
}
// LOCAL OSCILLATOR DDS GENERATOR FOR DUAL FREQUENCY OPERATION
if (enable_dds_lo_ == true)
{
if (tx_bandwidth_ < static_cast<uint64_t>(std::floor(static_cast<float>(freq_dds_tx_hz_) * 1.1)) || (tx_bandwidth_ < 200000) || (tx_bandwidth_ > 1000000))
{
std::cout << "Configuration parameter tx_bandwidth value should be between " << std::max(static_cast<float>(freq_dds_tx_hz_) * 1.1, 200000.0) << " and 1000000 Hz\n";
std::cout << "Error: provided value tx_bandwidth=" << tx_bandwidth_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value tx_bandwidth=500000\n";
tx_bandwidth_ = 500000;
LOG(WARNING) << "Invalid configuration value for tx_bandwidth parameter. Set to tx_bandwidth=500000";
}
if (tx_attenuation_db_ > 0.0 || tx_attenuation_db_ < -89.75)
{
std::cout << "Configuration parameter tx_attenuation_db should take values between 0.0 and -89.95 in 0.25 dB steps\n";
std::cout << "Error: provided value tx_attenuation_db=" << tx_attenuation_db_ << " is not among valid values\n";
std::cout << " This parameter has been set to its default value tx_attenuation_db=" << default_tx_attenuation_db << '\n';
tx_attenuation_db_ = default_tx_attenuation_db;
LOG(WARNING) << "Invalid configuration value for tx_attenuation_db parameter. Set to tx_attenuation_db=" << default_tx_attenuation_db;
}
try
{
config_ad9361_lo_local(tx_bandwidth_,
sample_rate_,
freq_rf_tx_hz_,
tx_attenuation_db_,
freq_dds_tx_hz_,
scale_dds_dbfs_,
phase_dds_deg_);
}
catch (const std::runtime_error &e)
{
std::cerr << "Exception cached when configuring the TX carrier: " << e.what() << '\n';
return;
}
}
// when the receiver is working in real-time mode via AD9361 perform buffer overflow checking,
// and if dump is enabled perform buffer monitoring
enable_ovf_check_buffer_monitor_active_ = true;
std::string device_io_name_buffer_monitor;
std::string dump_filename = configuration->property(role + ".dump_filename", default_dump_filename);
// find the uio device file corresponding to the buffer monitor
if (find_uio_dev_file_name(device_io_name_buffer_monitor, buffer_monitor_device_name, 0) < 0)
{
std::cerr << "Cannot find the FPGA uio device file corresponding to device name " << buffer_monitor_device_name << '\n';
return;
}
buffer_monitor_fpga = std::make_shared<Fpga_buffer_monitor>(device_io_name_buffer_monitor, num_freq_bands, dump_, dump_filename);
thread_buffer_monitor = std::thread([&] { run_buffer_monitor_process(); });
}
// dynamic bits selection
if (enable_dynamic_bit_selection_)
{
dynamic_bit_selection_fpga = std::make_shared<Fpga_dynamic_bit_selection>(enable_rx1_band, enable_rx2_band);
thread_dynamic_bit_selection = std::thread([&] { run_dynamic_bit_selection_process(); });
}
if (in_stream_ > 0)
{
LOG(ERROR) << "A signal source does not have an input stream";
}
if (out_stream_ > 1)
{
LOG(ERROR) << "This implementation only supports one output stream";
}
}
Ad9361FpgaSignalSource::~Ad9361FpgaSignalSource()
{
/* cleanup and exit */
if (switch_position_ == 0) // read samples from a file via DMA
{
std::unique_lock<std::mutex> lock(dma_mutex);
enable_DMA_ = false; // disable the DMA
lock.unlock();
if (thread_file_to_dma.joinable())
{
thread_file_to_dma.join();
}
}
if (switch_position_ == 2) // Real-time via AD9361
{
if (rf_shutdown_)
{
std::cout << "* AD9361 Disabling RX streaming channels\n";
if (!disable_ad9361_rx_local())
{
LOG(WARNING) << "Problem shutting down the AD9361 RX channels";
}
if (enable_dds_lo_)
{
try
{
ad9361_disable_lo_local();
}
catch (const std::exception &e)
{
LOG(WARNING) << "Problem shutting down the AD9361 TX stream: " << e.what();
}
}
}
// disable buffer overflow checking and buffer monitoring
std::unique_lock<std::mutex> lock(buffer_monitor_mutex);
enable_ovf_check_buffer_monitor_active_ = false;
lock.unlock();
if (thread_buffer_monitor.joinable())
{
thread_buffer_monitor.join();
}
}
std::unique_lock<std::mutex> lock(dynamic_bit_selection_mutex);
bool bit_selection_enabled = enable_dynamic_bit_selection_;
lock.unlock();
if (bit_selection_enabled == true)
{
std::unique_lock<std::mutex> lock(dynamic_bit_selection_mutex);
enable_dynamic_bit_selection_ = false;
lock.unlock();
if (thread_dynamic_bit_selection.joinable())
{
thread_dynamic_bit_selection.join();
}
}
}
void Ad9361FpgaSignalSource::start()
{
thread_file_to_dma = std::thread([&] { run_DMA_process(filename0_, filename1_, samples_to_skip_, item_size_, samples_, repeat_, dma_buff_offset_pos_, queue_); });
}
void Ad9361FpgaSignalSource::run_DMA_process(const std::string &filename0_, const std::string &filename1_, uint64_t &samples_to_skip, size_t &item_size, int64_t &samples, bool &repeat, uint32_t &dma_buff_offset_pos, Concurrent_Queue<pmt::pmt_t> *queue)
{
std::ifstream infile1;
infile1.exceptions(std::ifstream::failbit | std::ifstream::badbit);
// FPGA DMA control
dma_fpga = std::make_shared<Fpga_DMA>();
// open the files
try
{
infile1.open(filename0_, std::ios::binary);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception opening file " << filename0_ << '\n';
// stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
return;
}
std::ifstream infile2;
if (!filename1_.empty())
{
infile2.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
infile2.open(filename1_, std::ios::binary);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception opening file " << filename1_ << '\n';
// stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
return;
}
}
// skip the initial samples if neededsrc/algorithms/signal_source/libs/ad9361_manager.cc
uint64_t bytes_to_skeep = samples_to_skip * item_size;
try
{
infile1.ignore(bytes_to_skeep);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception skipping initial samples file " << filename0_ << '\n';
// stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
return;
}
if (!filename1_.empty())
{
try
{
infile2.ignore(bytes_to_skeep);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception skipping initial samples file " << filename1_ << '\n';
// stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
return;
}
}
// rx signal vectors
std::vector<int8_t> input_samples(sample_block_size * 2); // complex samples
// pointer to DMA buffer
int8_t *dma_buffer;
int nread_elements = 0; // num bytes read from the file corresponding to frequency band 1
bool run_DMA = true;
// Open DMA device
if (dma_fpga->DMA_open())
{
std::cerr << "Cannot open loop device\n";
// stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
return;
}
dma_buffer = dma_fpga->get_buffer_address();
// if only one frequency band is used then clear the samples corresponding to the unused frequency band
uint32_t dma_index = 0;
if (num_input_files_ == 1)
{
// if only one file is enabled then clear the samples corresponding to the frequency band that is not used.
for (int index0 = 0; index0 < (nread_elements); index0 += 2)
{
dma_buffer[dma_index + (2 - dma_buff_offset_pos)] = 0;
dma_buffer[dma_index + 1 + (2 - dma_buff_offset_pos)] = 0;
dma_index += 4;
}
}
uint64_t nbytes_remaining = samples * item_size;
uint32_t read_buffer_size = sample_block_size * 2; // complex samples
// run the DMA
while (run_DMA)
{
dma_index = 0;
if (nbytes_remaining < read_buffer_size)
{
read_buffer_size = nbytes_remaining;
}
nbytes_remaining = nbytes_remaining - read_buffer_size;
// read filename 0
try
{
infile1.read(reinterpret_cast<char *>(input_samples.data()), read_buffer_size);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception reading file " << filename0_ << '\n';
break;
}
if (infile1)
{
nread_elements = read_buffer_size;
}
else
{
// FLAG AS ERROR !! IT SHOULD NEVER HAPPEN
nread_elements = infile1.gcount();
}
for (int index0 = 0; index0 < (nread_elements); index0 += 2)
{
// dma_buff_offset_pos is 1 for the L1 band and 0 for the other bands
dma_buffer[dma_index + dma_buff_offset_pos] = input_samples[index0];
dma_buffer[dma_index + 1 + dma_buff_offset_pos] = input_samples[index0 + 1];
dma_index += 4;
}
// read filename 1 (if enabled)
if (num_input_files_ > 1)
{
dma_index = 0;
try
{
infile2.read(reinterpret_cast<char *>(input_samples.data()), read_buffer_size);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception reading file " << filename1_ << '\n';
break;
}
if (infile2)
{
nread_elements = read_buffer_size;
}
else
{
// FLAG AS ERROR !! IT SHOULD NEVER HAPPEN
nread_elements = infile2.gcount();
}
for (int index0 = 0; index0 < (nread_elements); index0 += 2)
{
// filename2 is never the L1 band
dma_buffer[dma_index] = input_samples[index0];
dma_buffer[dma_index + 1] = input_samples[index0 + 1];
dma_index += 4;
}
}
if (nread_elements > 0)
{
if (dma_fpga->DMA_write(nread_elements * 2))
{
std::cerr << "Error: DMA could not send all the required samples\n";
break;
}
// Throttle the DMA
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
if (nbytes_remaining == 0)
{
if (repeat)
{
// read the file again
nbytes_remaining = samples * item_size;
read_buffer_size = sample_block_size * 2;
try
{
infile1.seekg(0);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception resetting the position of the next byte to be extracted to zero " << filename0_ << '\n';
break;
}
// skip the initial samples if needed
uint64_t bytes_to_skeep = samples_to_skip * item_size;
try
{
infile1.ignore(bytes_to_skeep);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception skipping initial samples file " << filename0_ << '\n';
break;
}
if (!filename1_.empty())
{
try
{
infile2.seekg(0);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception setting the position of the next byte to be extracted to zero " << filename1_ << '\n';
break;
}
try
{
infile2.ignore(bytes_to_skeep);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception skipping initial samples file " << filename1_ << '\n';
break;
}
}
}
else
{
// the input file is completely processed. Stop the receiver.
run_DMA = false;
}
}
std::unique_lock<std::mutex> lock(dma_mutex);
if (enable_DMA_ == false)
{
run_DMA = false;
}
lock.unlock();
}
if (dma_fpga->DMA_close())
{
std::cerr << "Error closing loop device " << '\n';
}
try
{
infile1.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception closing file " << filename0_ << '\n';
}
if (num_input_files_ > 1)
{
try
{
infile2.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Exception closing file " << filename1_ << '\n';
}
}
// Stop the receiver
queue->push(pmt::make_any(command_event_make(200, 0)));
}
void Ad9361FpgaSignalSource::run_dynamic_bit_selection_process()
{
bool dynamic_bit_selection_active = true;
while (dynamic_bit_selection_active)
{
// setting the bit selection to the top bits
dynamic_bit_selection_fpga->bit_selection();
std::this_thread::sleep_for(std::chrono::milliseconds(Gain_control_period_ms));
std::unique_lock<std::mutex> lock(dynamic_bit_selection_mutex);
if (enable_dynamic_bit_selection_ == false)
{
dynamic_bit_selection_active = false;
}
lock.unlock();
}
}
void Ad9361FpgaSignalSource::run_buffer_monitor_process()
{
bool enable_ovf_check_buffer_monitor_active = true;
std::this_thread::sleep_for(std::chrono::milliseconds(buffer_monitoring_initial_delay_ms));
while (enable_ovf_check_buffer_monitor_active)
{
buffer_monitor_fpga->check_buffer_overflow_and_monitor_buffer_status();
std::this_thread::sleep_for(std::chrono::milliseconds(buffer_monitor_period_ms));
std::unique_lock<std::mutex> lock(buffer_monitor_mutex);
if (enable_ovf_check_buffer_monitor_active_ == false)
{
enable_ovf_check_buffer_monitor_active = false;
}
lock.unlock();
}
}
void Ad9361FpgaSignalSource::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
DLOG(INFO) << "AD9361 FPGA source nothing to connect";
}
void Ad9361FpgaSignalSource::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
DLOG(INFO) << "AD9361 FPGA source nothing to disconnect";
}
gr::basic_block_sptr Ad9361FpgaSignalSource::get_left_block()
{
LOG(WARNING) << "Trying to get signal source left block.";
return {};
}
gr::basic_block_sptr Ad9361FpgaSignalSource::get_right_block()
{
return {};
}