mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-10 12:00:04 +00:00
Fixing NEON proto-kernels
This commit is contained in:
parent
57107cf86d
commit
a5fb34c800
@ -1,12 +1,12 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
|
||||
* \file volk_gnsssdr_16ic_xn_resampler2_16ic_xn.h
|
||||
* \brief VOLK_GNSSSDR kernel: Resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
|
||||
* VOLK_GNSSSDR kernel that resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||
* It resamples a single GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
|
||||
* (i.e. it creates the Early, Prompt, and Late code replicas)
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@ -35,7 +35,7 @@
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \page volk_gnsssdr_16ic_xn_resampler_16ic_xn
|
||||
* \page volk_gnsssdr_16ic_xn_resampler2_16ic_xn
|
||||
*
|
||||
* \b Overview
|
||||
*
|
||||
@ -43,13 +43,14 @@
|
||||
*
|
||||
* <b>Dispatcher Prototype</b>
|
||||
* \code
|
||||
* void volk_gnsssdr_16ic_xn_resampler_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
* void volk_gnsssdr_16ic_xn_resampler2_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
* \endcode
|
||||
*
|
||||
* \b Inputs
|
||||
* \li local_code: One of the vectors to be multiplied.
|
||||
* \li rem_code_phase_chips: Remnant code phase [chips].
|
||||
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
|
||||
* \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
|
||||
* \li code_length_chips: Code length in chips.
|
||||
* \li num_out_vectors Number of output vectors.
|
||||
* \li num_output_samples: The number of data values to be in the resampled vector.
|
||||
@ -149,27 +150,17 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(lv_16sc_t**
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE4_1
|
||||
#include <smmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse4_1(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE3
|
||||
#include <pmmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
lv_16sc_t** _result = result;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
const __m128 ones = _mm_set1_ps(1.0f);
|
||||
const __m128 fours = _mm_set1_ps(4.0f);
|
||||
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||
@ -181,7 +172,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** re
|
||||
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
|
||||
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
|
||||
__m128i local_code_chip_index_reg, aux_i, negatives, i;
|
||||
__m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
|
||||
__m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
@ -193,11 +184,8 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** re
|
||||
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
|
||||
aux = _mm_add_ps(aux, aux2);
|
||||
// floor
|
||||
i = _mm_cvttps_epi32(aux);
|
||||
fi = _mm_cvtepi32_ps(i);
|
||||
igx = _mm_cmpgt_ps(fi, aux);
|
||||
j = _mm_and_ps(igx, ones);
|
||||
aux = _mm_sub_ps(fi, j);
|
||||
aux = _mm_floor_ps(aux);
|
||||
|
||||
// fmod
|
||||
c = _mm_div_ps(aux, code_length_chips_reg_f);
|
||||
i = _mm_cvttps_epi32(c);
|
||||
@ -230,11 +218,142 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** re
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE3
|
||||
#include <pmmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
lv_16sc_t** _result = result;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
const __m128 ones = _mm_set1_ps(1.0f);
|
||||
const __m128 fours = _mm_set1_ps(4.0f);
|
||||
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m128i zeros = _mm_setzero_si128();
|
||||
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
|
||||
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
|
||||
__m128i local_code_chip_index_reg, aux_i, negatives, i;
|
||||
__m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
|
||||
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
|
||||
for(unsigned int n = 0; n < quarterPoints; n++)
|
||||
{
|
||||
//__builtin_prefetch(&_result[current_correlator_tap][4 * n] + 8, 1, 0);
|
||||
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
|
||||
aux = _mm_add_ps(aux, aux2);
|
||||
// floor
|
||||
i = _mm_cvttps_epi32(aux);
|
||||
fi = _mm_cvtepi32_ps(i);
|
||||
igx = _mm_cmpgt_ps(fi, aux);
|
||||
j = _mm_and_ps(igx, ones);
|
||||
aux = _mm_sub_ps(fi, j);
|
||||
// fmod
|
||||
c = _mm_div_ps(aux, code_length_chips_reg_f);
|
||||
i = _mm_cvttps_epi32(c);
|
||||
cTrunc = _mm_cvtepi32_ps(i);
|
||||
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
|
||||
|
||||
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
|
||||
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
|
||||
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
|
||||
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
|
||||
for(unsigned int k = 0; k < 4; ++k)
|
||||
{
|
||||
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||
}
|
||||
indexn = _mm_add_ps(indexn, fours);
|
||||
}
|
||||
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||
{
|
||||
//__builtin_prefetch(&_result[current_correlator_tap][n] + 2, 1, 0);
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE3
|
||||
#include <pmmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse3(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
|
||||
lv_16sc_t** _result = result;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
const __m128 ones = _mm_set1_ps(1.0f);
|
||||
const __m128 fours = _mm_set1_ps(4.0f);
|
||||
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m128i zeros = _mm_setzero_si128();
|
||||
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
|
||||
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
|
||||
__m128i local_code_chip_index_reg, aux_i, negatives, i;
|
||||
__m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
|
||||
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
|
||||
for(unsigned int n = 0; n < quarterPoints; n++)
|
||||
{
|
||||
//__builtin_prefetch(&_result[current_correlator_tap][4 * n + 3], 1, 0);
|
||||
//__builtin_prefetch(&local_code_chip_index[4]);
|
||||
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
|
||||
aux = _mm_add_ps(aux, aux2);
|
||||
// floor
|
||||
i = _mm_cvttps_epi32(aux);
|
||||
fi = _mm_cvtepi32_ps(i);
|
||||
igx = _mm_cmpgt_ps(fi, aux);
|
||||
j = _mm_and_ps(igx, ones);
|
||||
aux = _mm_sub_ps(fi, j);
|
||||
// fmod
|
||||
c = _mm_div_ps(aux, code_length_chips_reg_f);
|
||||
i = _mm_cvttps_epi32(c);
|
||||
cTrunc = _mm_cvtepi32_ps(i);
|
||||
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
|
||||
|
||||
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
|
||||
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
|
||||
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
|
||||
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
|
||||
for(unsigned int k = 0; k < 4; ++k)
|
||||
{
|
||||
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||
}
|
||||
indexn = _mm_add_ps(indexn, fours);
|
||||
}
|
||||
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||
{
|
||||
//__builtin_prefetch(&_result[current_correlator_tap][n], 1, 0);
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -260,6 +379,78 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res
|
||||
__m256i local_code_chip_index_reg, i;
|
||||
__m256 aux, aux2, shifts_chips_reg, c, cTrunc, base, negatives;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
|
||||
aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||
__m256 indexn = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
|
||||
for(unsigned int n = 0; n < avx_iters; n++)
|
||||
{
|
||||
__builtin_prefetch(&_result[current_correlator_tap][8 * n + 7], 1, 0);
|
||||
__builtin_prefetch(&local_code_chip_index[8]);
|
||||
aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
|
||||
aux = _mm256_add_ps(aux, aux2);
|
||||
// floor
|
||||
aux = _mm256_floor_ps(aux);
|
||||
|
||||
// fmod
|
||||
c = _mm256_div_ps(aux, code_length_chips_reg_f);
|
||||
i = _mm256_cvttps_epi32(c);
|
||||
cTrunc = _mm256_cvtepi32_ps(i);
|
||||
base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||
aux = _mm256_sub_ps(aux, base);
|
||||
|
||||
negatives = _mm256_cmp_ps(aux, zeros, 0x01);
|
||||
aux2 = _mm256_and_ps(code_length_chips_reg_f, negatives);
|
||||
local_code_chip_index_reg = _mm256_cvtps_epi32(_mm256_add_ps(aux, aux2));
|
||||
_mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
|
||||
for(unsigned int k = 0; k < 8; ++k)
|
||||
{
|
||||
_result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
|
||||
}
|
||||
indexn = _mm256_add_ps(indexn, eights);
|
||||
}
|
||||
}
|
||||
_mm256_zeroupper();
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
__builtin_prefetch(&_result[current_correlator_tap][n], 1, 0);
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_AVX
|
||||
#include <immintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
lv_16sc_t** _result = result;
|
||||
const unsigned int avx_iters = num_output_samples / 8;
|
||||
|
||||
const __m256 eights = _mm256_set1_ps(8.0f);
|
||||
const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
|
||||
const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m256 zeros = _mm256_setzero_ps();
|
||||
const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
|
||||
|
||||
__m256i local_code_chip_index_reg, i;
|
||||
__m256 aux, aux2, shifts_chips_reg, c, cTrunc, base, negatives;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
|
||||
@ -282,6 +473,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res
|
||||
negatives = _mm256_cmp_ps(aux, zeros, 0x01);
|
||||
aux2 = _mm256_and_ps(code_length_chips_reg_f, negatives);
|
||||
local_code_chip_index_reg = _mm256_cvtps_epi32(_mm256_add_ps(aux, aux2));
|
||||
|
||||
_mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
|
||||
for(unsigned int k = 0; k < 8; ++k)
|
||||
{
|
||||
@ -289,7 +481,10 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res
|
||||
}
|
||||
indexn = _mm256_add_ps(indexn, eights);
|
||||
}
|
||||
|
||||
}
|
||||
_mm256_zeroupper();
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
@ -300,17 +495,6 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
}
|
||||
_mm256_zeroupper();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_AVX
|
||||
#include <immintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -318,7 +502,6 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** res
|
||||
|
||||
#ifdef LV_HAVE_NEON
|
||||
#include <arm_neon.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
{
|
||||
lv_16sc_t** _result = result;
|
||||
@ -328,26 +511,26 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu
|
||||
const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips);
|
||||
const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips);
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
int local_code_chip_index_;
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) int32_t local_code_chip_index[4];
|
||||
int32_t local_code_chip_index_;
|
||||
const int32x4_t zeros = vdupq_n_s32(0);
|
||||
const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
|
||||
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int)code_length_chips);
|
||||
|
||||
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips);
|
||||
int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
|
||||
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base;
|
||||
__attribute__((aligned(16))) float vec[4] = { 3.0f, 2.0f, 1.0f, 0.0f };
|
||||
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal;
|
||||
__VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
uint32x4_t igx;
|
||||
float32x4_t half = vdupq_n_f32(0.5f);
|
||||
float32x4_t sign, PlusHalf, Round;
|
||||
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]);
|
||||
aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||
float32x4_t indexn = vld1q_f32((float*)vec);
|
||||
|
||||
indexn = vld1q_f32((float*)vec);
|
||||
for(unsigned int n = 0; n < neon_iters; n++)
|
||||
{
|
||||
__builtin_prefetch(&_result[current_correlator_tap][4 * n + 3], 1, 0);
|
||||
__builtin_prefetch(&local_code_chip_index[4]);
|
||||
aux = vmulq_f32(code_phase_step_chips_reg, indexn);
|
||||
aux = vaddq_f32(aux, aux2);
|
||||
// floor
|
||||
@ -358,20 +541,21 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu
|
||||
aux = vsubq_f32(fi, j);
|
||||
|
||||
// fmod
|
||||
c = vdivq_f32(aux, code_length_chips_reg_f);
|
||||
reciprocal = vrecpeq_f32(code_length_chips_reg_f);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required!
|
||||
c = vmulq_f32(aux, reciprocal);
|
||||
i = vcvtq_s32_f32(c);
|
||||
cTrunc = vcvtq_f32_s32(i);
|
||||
base = vmulq_f32(cTrunc, code_length_chips_reg_f);
|
||||
aux = vsubq_f32(aux, base);
|
||||
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(aux), 31)));
|
||||
PlusHalf = vaddq_f32(aux, half);
|
||||
Round = vsubq_f32(PlusHalf, sign);
|
||||
local_code_chip_index_reg = vcvtq_s32_f32(Round);
|
||||
local_code_chip_index_reg = vcvtq_s32_f32(aux);
|
||||
|
||||
negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
|
||||
aux_i = vandq_s32(code_length_chips_reg_i, negatives);
|
||||
local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
|
||||
vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
|
||||
|
||||
vst1q_s32((int*)local_code_chip_index, local_code_chip_index_reg);
|
||||
for(unsigned int k = 0; k < 4; ++k)
|
||||
{
|
||||
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||
@ -380,8 +564,9 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu
|
||||
}
|
||||
for(unsigned int n = neon_iters * 4; n < num_output_samples; n++)
|
||||
{
|
||||
__builtin_prefetch(&_result[current_correlator_tap][n], 1, 0);
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = (int32_t)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
@ -390,6 +575,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -335,7 +335,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul
|
||||
const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
|
||||
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips);
|
||||
int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
|
||||
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn;
|
||||
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal;
|
||||
__VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
uint32x4_t igx;
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
@ -345,6 +345,8 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul
|
||||
indexn = vld1q_f32((float*)vec);
|
||||
for(unsigned int n = 0; n < neon_iters; n++)
|
||||
{
|
||||
__builtin_prefetch(&_result[current_correlator_tap][4 * n + 3], 1, 0);
|
||||
__builtin_prefetch(&local_code_chip_index[4]);
|
||||
aux = vmulq_f32(code_phase_step_chips_reg, indexn);
|
||||
aux = vaddq_f32(aux, aux2);
|
||||
// floor
|
||||
@ -354,7 +356,10 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul
|
||||
j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones));
|
||||
aux = vsubq_f32(fi, j);
|
||||
// fmod
|
||||
c = vdivq_f32(aux, code_length_chips_reg_f);
|
||||
reciprocal = vrecpeq_f32(code_length_chips_reg_f);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required!
|
||||
c = vmulq_f32(aux, reciprocal);
|
||||
i = vcvtq_s32_f32(c);
|
||||
cTrunc = vcvtq_f32_s32(i);
|
||||
base = vmulq_f32(cTrunc, code_length_chips_reg_f);
|
||||
@ -364,6 +369,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul
|
||||
negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
|
||||
aux_i = vandq_s32(code_length_chips_reg_i, negatives);
|
||||
local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
|
||||
|
||||
vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
|
||||
|
||||
for(unsigned int k = 0; k < 4; ++k)
|
||||
@ -374,6 +380,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul
|
||||
}
|
||||
for(unsigned int n = neon_iters * 4; n < num_points; n++)
|
||||
{
|
||||
__builtin_prefetch(&_result[current_correlator_tap][n], 1, 0);
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int32_t)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
|
Loading…
Reference in New Issue
Block a user