1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-24 22:13:15 +00:00

Introducing a new resampler kernel for comparison

This commit is contained in:
Carles Fernandez 2016-04-01 12:41:00 +02:00
parent 7658f64527
commit 57107cf86d
5 changed files with 685 additions and 12 deletions

View File

@ -0,0 +1,282 @@
/*!
* \file volk_gnsssdr_16ic_resamplerxnpuppet_16ic.h
* \brief VOLK_GNSSSDR puppet for the multiple 16-bit complex vector resampler kernel.
* \authors <ul>
* <li> Carles Fernandez Prades 2016 cfernandez at cttc dot cat
* </ul>
*
* VOLK_GNSSSDR puppet for integrating the multiple resampler into the test system
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef INCLUDED_volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_H
#define INCLUDED_volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_H
#include "volk_gnsssdr/volk_gnsssdr_16ic_xn_resampler2_16ic_xn.h"
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <string.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_a_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_u_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_SSE4_1
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_u_sse4_1(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_SSE4_1
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_a_sse4_1(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_u_avx(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_a_avx(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_16ic_resamplerxnpuppet2_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
{
float code_phase_step_chips = 0.6;
int code_length_chips = 2046;
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_16sc_t*)result, (lv_16sc_t*)result_aux[0], sizeof(lv_16sc_t) * num_points);
for(unsigned int n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
#endif // INCLUDED_volk_gnsssdr_16ic_resamplerpuppet_16ic_H

View File

@ -0,0 +1,397 @@
/*!
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
* \brief VOLK_GNSSSDR kernel: Resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* </ul>
*
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
* (i.e. it creates the Early, Prompt, and Late code replicas)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
/*!
* \page volk_gnsssdr_16ic_xn_resampler_16ic_xn
*
* \b Overview
*
* Resamples a complex vector (16-bit integer each component), providing \p num_out_vectors outputs.
*
* <b>Dispatcher Prototype</b>
* \code
* void volk_gnsssdr_16ic_xn_resampler_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
* \endcode
*
* \b Inputs
* \li local_code: One of the vectors to be multiplied.
* \li rem_code_phase_chips: Remnant code phase [chips].
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
* \li code_length_chips: Code length in chips.
* \li num_out_vectors Number of output vectors.
* \li num_output_samples: The number of data values to be in the resampled vector.
*
* \b Outputs
* \li result: Pointer to a vector of pointers where the results will be stored.
*
*/
#ifndef INCLUDED_volk_gnsssdr_16ic_xn_resampler2_16ic_xn_H
#define INCLUDED_volk_gnsssdr_16ic_xn_resampler2_16ic_xn_H
#include <math.h>
#include <volk_gnsssdr/volk_gnsssdr_common.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_generic(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
int local_code_chip_index;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
for (int n = 0; n < num_output_samples; n++)
{
// resample code for current tap
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index = local_code_chip_index % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0) local_code_chip_index += code_length_chips;
result[current_correlator_tap][n] = local_code[local_code_chip_index];
}
}
}
#endif /*LV_HAVE_GENERIC*/
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
lv_16sc_t** _result = result;
const unsigned int quarterPoints = num_output_samples / 4;
const __m128 fours = _mm_set1_ps(4.0f);
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
int local_code_chip_index_;
const __m128i zeros = _mm_setzero_si128();
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
__m128i local_code_chip_index_reg, aux_i, negatives, i;
__m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
for(unsigned int n = 0; n < quarterPoints; n++)
{
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
aux = _mm_add_ps(aux, aux2);
// floor
aux = _mm_floor_ps(aux);
// fmod
c = _mm_div_ps(aux, code_length_chips_reg_f);
i = _mm_cvttps_epi32(c);
cTrunc = _mm_cvtepi32_ps(i);
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
for(unsigned int k = 0; k < 4; ++k)
{
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm_add_ps(indexn, fours);
}
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse4_1(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
}
#endif
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
lv_16sc_t** _result = result;
const unsigned int quarterPoints = num_output_samples / 4;
const __m128 ones = _mm_set1_ps(1.0f);
const __m128 fours = _mm_set1_ps(4.0f);
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
int local_code_chip_index_;
const __m128i zeros = _mm_setzero_si128();
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
__m128i local_code_chip_index_reg, aux_i, negatives, i;
__m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
for(unsigned int n = 0; n < quarterPoints; n++)
{
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
aux = _mm_add_ps(aux, aux2);
// floor
i = _mm_cvttps_epi32(aux);
fi = _mm_cvtepi32_ps(i);
igx = _mm_cmpgt_ps(fi, aux);
j = _mm_and_ps(igx, ones);
aux = _mm_sub_ps(fi, j);
// fmod
c = _mm_div_ps(aux, code_length_chips_reg_f);
i = _mm_cvttps_epi32(c);
cTrunc = _mm_cvtepi32_ps(i);
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
for(unsigned int k = 0; k < 4; ++k)
{
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm_add_ps(indexn, fours);
}
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse3(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
}
#endif
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
lv_16sc_t** _result = result;
const unsigned int avx_iters = num_output_samples / 8;
const __m256 eights = _mm256_set1_ps(8.0f);
const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
__VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8];
int local_code_chip_index_;
const __m256 zeros = _mm256_setzero_ps();
const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
__m256i local_code_chip_index_reg, i;
__m256 aux, aux2, shifts_chips_reg, c, cTrunc, base, negatives;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
__m256 indexn = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
for(unsigned int n = 0; n < avx_iters; n++)
{
aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
aux = _mm256_add_ps(aux, aux2);
// floor
aux = _mm256_floor_ps(aux);
// fmod
c = _mm256_div_ps(aux, code_length_chips_reg_f);
i = _mm256_cvttps_epi32(c);
cTrunc = _mm256_cvtepi32_ps(i);
base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
aux = _mm256_sub_ps(aux, base);
negatives = _mm256_cmp_ps(aux, zeros, 0x01);
aux2 = _mm256_and_ps(code_length_chips_reg_f, negatives);
local_code_chip_index_reg = _mm256_cvtps_epi32(_mm256_add_ps(aux, aux2));
_mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
for(unsigned int k = 0; k < 8; ++k)
{
_result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm256_add_ps(indexn, eights);
}
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
_mm256_zeroupper();
}
#endif
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(result, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_output_samples);
}
#endif
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
lv_16sc_t** _result = result;
const unsigned int neon_iters = num_output_samples / 4;
const int32x4_t ones = vdupq_n_s32(1);
const float32x4_t fours = vdupq_n_f32(4.0f);
const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips);
const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips);
__attribute__((aligned(16))) int local_code_chip_index[4];
int local_code_chip_index_;
const int32x4_t zeros = vdupq_n_s32(0);
const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int)code_length_chips);
int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base;
__attribute__((aligned(16))) float vec[4] = { 3.0f, 2.0f, 1.0f, 0.0f };
uint32x4_t igx;
float32x4_t half = vdupq_n_f32(0.5f);
float32x4_t sign, PlusHalf, Round;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]);
aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg);
float32x4_t indexn = vld1q_f32((float*)vec);
for(unsigned int n = 0; n < neon_iters; n++)
{
aux = vmulq_f32(code_phase_step_chips_reg, indexn);
aux = vaddq_f32(aux, aux2);
// floor
i = vcvtq_s32_f32(aux);
fi = vcvtq_f32_s32(i);
igx = vcgtq_f32(fi, aux);
j = vreinterpretq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones));
aux = vsubq_f32(fi, j);
// fmod
c = vdivq_f32(aux, code_length_chips_reg_f);
i = vcvtq_s32_f32(c);
cTrunc = vcvtq_f32_s32(i);
base = vmulq_f32(cTrunc, code_length_chips_reg_f);
aux = vsubq_f32(aux, base);
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(aux), 31)));
PlusHalf = vaddq_f32(aux, half);
Round = vsubq_f32(PlusHalf, sign);
local_code_chip_index_reg = vcvtq_s32_f32(Round);
negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
aux_i = vandq_s32(code_length_chips_reg_i, negatives);
local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
for(unsigned int k = 0; k < 4; ++k)
{
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = vaddq_f32(indexn, fours);
}
for(unsigned int n = neon_iters * 4; n < num_output_samples; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_H*/

View File

@ -66,15 +66,9 @@
#include <volk_gnsssdr/volk_gnsssdr_common.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
//#pragma STDC FENV_ACCESS ON
#ifdef LV_HAVE_GENERIC
//int round_int( float r ) {
// return (r > 0.0) ? (r + 0.5) : (r - 0.5);
//}
static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_generic(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
int local_code_chip_index;
@ -91,7 +85,6 @@ static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_generic(lv_16sc_t** re
result[current_vector][n] = local_code[local_code_chip_index];
}
}
//std::cout<<std::endl;
}
#endif /*LV_HAVE_GENERIC*/
@ -102,7 +95,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_generic(lv_16sc_t** re
static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_sse2(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
_MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
unsigned int number;
const unsigned int quarterPoints = num_output_samples / 4;
@ -195,7 +188,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_sse2(lv_16sc_t** res
static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_u_sse2(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
{
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
_MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
unsigned int number;
const unsigned int quarterPoints = num_output_samples / 4;

View File

@ -116,7 +116,7 @@ static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_sse3(lv_32fc_t* re
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
@ -146,7 +146,7 @@ static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_sse4_1(lv_32fc_t*
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
@ -233,7 +233,7 @@ static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_avx(lv_32fc_t* res
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);

View File

@ -87,6 +87,7 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params_int1))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet2_16ic, volk_gnsssdr_16ic_xn_resampler2_16ic_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_32fc_resamplerxnpuppet_32fc, volk_gnsssdr_32fc_xn_resampler_32fc_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))