mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 07:13:03 +00:00 
			
		
		
		
	Adding new NEON protokernel
Try another strategy based on multiply-and-accumulate for the dot product. In all SIMD protokernels, managing memory with volk_gnsssdr_malloc and volk_gnsssdr_free instead of calloc and free
This commit is contained in:
		| @@ -71,8 +71,9 @@ | |||||||
|  |  | ||||||
| #include <volk_gnsssdr/volk_gnsssdr_complex.h> | #include <volk_gnsssdr/volk_gnsssdr_complex.h> | ||||||
| #include <volk_gnsssdr/saturation_arithmetic.h> | #include <volk_gnsssdr/saturation_arithmetic.h> | ||||||
|  | #include <volk_gnsssdr/volk_gnsssdr_malloc.h> | ||||||
| #include <math.h> | #include <math.h> | ||||||
| #include <stdio.h> | //#include <stdio.h> | ||||||
|  |  | ||||||
| #ifdef LV_HAVE_GENERIC | #ifdef LV_HAVE_GENERIC | ||||||
|  |  | ||||||
| @@ -184,13 +185,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_ | |||||||
|  |  | ||||||
|     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; |     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | ||||||
|  |  | ||||||
|     //todo dyn mem reg |     __m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |     __m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |  | ||||||
|     __m128i* realcacc; |     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|     __m128i* imagcacc; |         { | ||||||
|  |             realcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |             imagcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |         } | ||||||
|  |  | ||||||
|     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; |     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; | ||||||
|  |  | ||||||
| @@ -308,8 +310,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_ | |||||||
|                 } |                 } | ||||||
|             _out[n_vec] = dotProduct; |             _out[n_vec] = dotProduct; | ||||||
|         } |         } | ||||||
|     free(realcacc); |     volk_gnsssdr_free(realcacc); | ||||||
|     free(imagcacc); |     volk_gnsssdr_free(imagcacc); | ||||||
|  |  | ||||||
|     tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); |     tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); | ||||||
|     tmp2 = _mm_hadd_ps(tmp1, tmp1); |     tmp2 = _mm_hadd_ps(tmp1, tmp1); | ||||||
| @@ -356,13 +358,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(l | |||||||
|  |  | ||||||
|     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; |     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | ||||||
|  |  | ||||||
|     //todo dyn mem reg |     __m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |     __m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |  | ||||||
|     __m128i* realcacc; |     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|     __m128i* imagcacc; |         { | ||||||
|  |             realcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |             imagcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |         } | ||||||
|  |  | ||||||
|     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; |     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; | ||||||
|  |  | ||||||
| @@ -550,8 +553,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(l | |||||||
|             _out[n_vec] = dotProduct; |             _out[n_vec] = dotProduct; | ||||||
|         } |         } | ||||||
|  |  | ||||||
|     free(realcacc); |     volk_gnsssdr_free(realcacc); | ||||||
|     free(imagcacc); |     volk_gnsssdr_free(imagcacc); | ||||||
|  |  | ||||||
|     tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); |     tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); | ||||||
|     tmp2 = _mm_hadd_ps(tmp1, tmp1); |     tmp2 = _mm_hadd_ps(tmp1, tmp1); | ||||||
| @@ -598,13 +601,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_ | |||||||
|     lv_16sc_t* _out = result; |     lv_16sc_t* _out = result; | ||||||
|     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; |     __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | ||||||
|  |  | ||||||
|     //todo dyn mem reg |     __m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |     __m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | ||||||
|  |  | ||||||
|     __m128i* realcacc; |     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|     __m128i* imagcacc; |         { | ||||||
|  |             realcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |             imagcacc[n_vec] = _mm_setzero_si128(); | ||||||
|     imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 |         } | ||||||
|  |  | ||||||
|     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; |     __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; | ||||||
|  |  | ||||||
| @@ -722,8 +726,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_ | |||||||
|                 } |                 } | ||||||
|             _out[n_vec] = dotProduct; |             _out[n_vec] = dotProduct; | ||||||
|         } |         } | ||||||
|     free(realcacc); |     volk_gnsssdr_free(realcacc); | ||||||
|     free(imagcacc); |     volk_gnsssdr_free(imagcacc); | ||||||
|  |  | ||||||
|     _mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg); |     _mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg); | ||||||
|     (*phase) = two_phase_acc[0]; |     (*phase) = two_phase_acc[0]; | ||||||
| @@ -792,8 +796,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* | |||||||
|             float32x4x2_t tmp32f, tmp32_real, tmp32_imag; |             float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | ||||||
|             float32x4_t sign, PlusHalf, Round; |             float32x4_t sign, PlusHalf, Round; | ||||||
|  |  | ||||||
|             int16x4x2_t* accumulator; |             int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | ||||||
|             accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t)); |  | ||||||
|  |  | ||||||
|             for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) |             for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|                 { |                 { | ||||||
| @@ -904,7 +907,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* | |||||||
|                         } |                         } | ||||||
|                     _out[n_vec] = dotProduct; |                     _out[n_vec] = dotProduct; | ||||||
|                 } |                 } | ||||||
|             free(accumulator); |             volk_gnsssdr_free(accumulator); | ||||||
|             vst1q_f32((float32_t*)__phase_real, _phase_real); |             vst1q_f32((float32_t*)__phase_real, _phase_real); | ||||||
|             vst1q_f32((float32_t*)__phase_imag, _phase_imag); |             vst1q_f32((float32_t*)__phase_imag, _phase_imag); | ||||||
|  |  | ||||||
| @@ -976,8 +979,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s | |||||||
|             float32x4x2_t tmp32f, tmp32_real, tmp32_imag; |             float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | ||||||
|             float32x4_t sign, PlusHalf, Round; |             float32x4_t sign, PlusHalf, Round; | ||||||
|  |  | ||||||
|             int16x4x2_t* accumulator; |             int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | ||||||
|             accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t)); |  | ||||||
|  |  | ||||||
|             for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) |             for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|                 { |                 { | ||||||
| @@ -1095,7 +1097,189 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s | |||||||
|                         } |                         } | ||||||
|                     _out[n_vec] = dotProduct; |                     _out[n_vec] = dotProduct; | ||||||
|                 } |                 } | ||||||
|             free(accumulator); |             volk_gnsssdr_free(accumulator); | ||||||
|  |  | ||||||
|  |             vst1q_f32((float32_t*)__phase_real, _phase_real); | ||||||
|  |             vst1q_f32((float32_t*)__phase_imag, _phase_imag); | ||||||
|  |  | ||||||
|  |             (*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]); | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |     for (unsigned int n = neon_iters * 4; n < num_points; n++) | ||||||
|  |         { | ||||||
|  |             tmp16_ = in_common[n];  //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase)); | ||||||
|  |             tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase); | ||||||
|  |             tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_))); | ||||||
|  |             (*phase) *= phase_inc; | ||||||
|  |             for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|  |                 { | ||||||
|  |                     tmp = tmp16_ * in_a[n_vec][n]; | ||||||
|  |                     _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); | ||||||
|  |                 } | ||||||
|  |         } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | #endif /* LV_HAVE_NEON */ | ||||||
|  |  | ||||||
|  |  | ||||||
|  | #ifdef LV_HAVE_NEON | ||||||
|  | #include <arm_neon.h> | ||||||
|  | #include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h> | ||||||
|  |  | ||||||
|  | static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_optvma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a,  int num_a_vectors, unsigned int num_points) | ||||||
|  | { | ||||||
|  |     const unsigned int neon_iters = num_points / 4; | ||||||
|  |  | ||||||
|  |     const lv_16sc_t** _in_a = in_a; | ||||||
|  |     const lv_16sc_t* _in_common = in_common; | ||||||
|  |     lv_16sc_t* _out = result; | ||||||
|  |  | ||||||
|  |     lv_16sc_t tmp16_, tmp; | ||||||
|  |     lv_32fc_t tmp32_; | ||||||
|  |  | ||||||
|  |     if (neon_iters > 0) | ||||||
|  |         { | ||||||
|  |             lv_16sc_t dotProduct = lv_cmake(0,0); | ||||||
|  |             float arg_phase0 = cargf(*phase); | ||||||
|  |             float arg_phase_inc = cargf(phase_inc); | ||||||
|  |             float phase_est; | ||||||
|  |  | ||||||
|  |             lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc; | ||||||
|  |             __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) }; | ||||||
|  |             __VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) }; | ||||||
|  |  | ||||||
|  |             float32x4_t _phase4_real = vld1q_f32(__phase4_real); | ||||||
|  |             float32x4_t _phase4_imag = vld1q_f32(__phase4_imag); | ||||||
|  |  | ||||||
|  |             lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc; | ||||||
|  |             lv_32fc_t phase3 = phase2 * phase_inc; | ||||||
|  |             lv_32fc_t phase4 = phase3 * phase_inc; | ||||||
|  |  | ||||||
|  |             __VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | ||||||
|  |             __VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | ||||||
|  |  | ||||||
|  |             float32x4_t _phase_real = vld1q_f32(__phase_real); | ||||||
|  |             float32x4_t _phase_imag = vld1q_f32(__phase_imag); | ||||||
|  |  | ||||||
|  |             int16x4x2_t a_val, b_val; | ||||||
|  |             __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | ||||||
|  |             float32x4_t half = vdupq_n_f32(0.5f); | ||||||
|  |             int32x4x2_t tmp32i; | ||||||
|  |  | ||||||
|  |             float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | ||||||
|  |             float32x4_t sign, PlusHalf, Round; | ||||||
|  |  | ||||||
|  |             int16x4x2_t* accumulator1 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | ||||||
|  |             int16x4x2_t* accumulator2 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | ||||||
|  |  | ||||||
|  |             for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|  |                 { | ||||||
|  |                     accumulator1[n_vec].val[0] = vdup_n_s16(0); | ||||||
|  |                     accumulator1[n_vec].val[1] = vdup_n_s16(0); | ||||||
|  |                     accumulator2[n_vec].val[0] = vdup_n_s16(0); | ||||||
|  |                     accumulator2[n_vec].val[1] = vdup_n_s16(0); | ||||||
|  |                 } | ||||||
|  |  | ||||||
|  |             for(unsigned int number = 0; number < neon_iters; number++) | ||||||
|  |                 { | ||||||
|  |                     /* load 4 complex numbers (int 16 bits each component) */ | ||||||
|  |                     b_val = vld2_s16((int16_t*)_in_common); | ||||||
|  |                     __builtin_prefetch(_in_common + 8); | ||||||
|  |                     _in_common += 4; | ||||||
|  |  | ||||||
|  |                     /* promote them to int 32 bits */ | ||||||
|  |                     tmp32i.val[0] = vmovl_s16(b_val.val[0]); | ||||||
|  |                     tmp32i.val[1] = vmovl_s16(b_val.val[1]); | ||||||
|  |  | ||||||
|  |                     /* promote them to float 32 bits */ | ||||||
|  |                     tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]); | ||||||
|  |                     tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]); | ||||||
|  |  | ||||||
|  |                     /* complex multiplication of four complex samples (float 32 bits each component) */ | ||||||
|  |                     tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real); | ||||||
|  |                     tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag); | ||||||
|  |                     tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag); | ||||||
|  |                     tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real); | ||||||
|  |  | ||||||
|  |                     tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | ||||||
|  |                     tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | ||||||
|  |  | ||||||
|  |                     /* downcast results to int32 */ | ||||||
|  |                     /* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */ | ||||||
|  |                     sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31))); | ||||||
|  |                     PlusHalf = vaddq_f32(tmp32f.val[0], half); | ||||||
|  |                     Round = vsubq_f32(PlusHalf, sign); | ||||||
|  |                     tmp32i.val[0] = vcvtq_s32_f32(Round); | ||||||
|  |  | ||||||
|  |                     sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31))); | ||||||
|  |                     PlusHalf = vaddq_f32(tmp32f.val[1], half); | ||||||
|  |                     Round = vsubq_f32(PlusHalf, sign); | ||||||
|  |                     tmp32i.val[1] = vcvtq_s32_f32(Round); | ||||||
|  |  | ||||||
|  |                     /* downcast results to int16 */ | ||||||
|  |                     b_val.val[0] = vqmovn_s32(tmp32i.val[0]); | ||||||
|  |                     b_val.val[1] = vqmovn_s32(tmp32i.val[1]); | ||||||
|  |  | ||||||
|  |                     /* compute next four phases */ | ||||||
|  |                     tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real); | ||||||
|  |                     tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag); | ||||||
|  |                     tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag); | ||||||
|  |                     tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real); | ||||||
|  |  | ||||||
|  |                     _phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | ||||||
|  |                     _phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | ||||||
|  |  | ||||||
|  |                     // Regenerate phase | ||||||
|  |                     if ((number % 256) == 0) | ||||||
|  |                         { | ||||||
|  |                             //printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0])))); | ||||||
|  |                             phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc; | ||||||
|  |                             //printf("Estimated phase: %f\n\n", cos(phase_est)); | ||||||
|  |  | ||||||
|  |                             *phase = lv_cmake(cos(phase_est), sin(phase_est)); | ||||||
|  |                             phase2 = (lv_32fc_t)(*phase) * phase_inc; | ||||||
|  |                             phase3 = phase2 * phase_inc; | ||||||
|  |                             phase4 = phase3 * phase_inc; | ||||||
|  |  | ||||||
|  |                             __VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | ||||||
|  |                             __VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | ||||||
|  |  | ||||||
|  |                             _phase_real = vld1q_f32(____phase_real); | ||||||
|  |                             _phase_imag = vld1q_f32(____phase_imag); | ||||||
|  |                         } | ||||||
|  |  | ||||||
|  |                     vst1q_f32((float32_t*)__phase_real, _phase_real); | ||||||
|  |                     vst1q_f32((float32_t*)__phase_imag, _phase_imag); | ||||||
|  |  | ||||||
|  |                     for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|  |                         { | ||||||
|  |                             a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); | ||||||
|  |  | ||||||
|  |                             // use 2 accumulators to remove inter-instruction data dependencies | ||||||
|  |                             accumulator1[n_vec].val[0] = vmla_s16(accumulator1[n_vec].val[0], a_val.val[0], b_val.val[0]); | ||||||
|  |                             accumulator1[n_vec].val[1] = vmla_s16(accumulator1[n_vec].val[1], a_val.val[0], b_val.val[1]); | ||||||
|  |                             accumulator2[n_vec].val[0] = vmls_s16(accumulator2[n_vec].val[0], a_val.val[1], b_val.val[1]); | ||||||
|  |                             accumulator2[n_vec].val[1] = vmla_s16(accumulator2[n_vec].val[1], a_val.val[1], b_val.val[0]); | ||||||
|  |                         } | ||||||
|  |                 } | ||||||
|  |             for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|  |                 { | ||||||
|  |                     accumulator1[n_vec].val[0] = vqadd_s16(accumulator1[n_vec].val[0], accumulator2[n_vec].val[0]); | ||||||
|  |                     accumulator1[n_vec].val[1] = vqadd_s16(accumulator1[n_vec].val[1], accumulator2[n_vec].val[1]); | ||||||
|  |                 } | ||||||
|  |             for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) | ||||||
|  |                 { | ||||||
|  |                     vst2_s16((int16_t*)dotProductVector, accumulator1[n_vec]); // Store the results back into the dot product vector | ||||||
|  |                     dotProduct = lv_cmake(0,0); | ||||||
|  |                     for (int i = 0; i < 4; ++i) | ||||||
|  |                         { | ||||||
|  |                             dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), | ||||||
|  |                                     sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); | ||||||
|  |                         } | ||||||
|  |                     _out[n_vec] = dotProduct; | ||||||
|  |                 } | ||||||
|  |             volk_gnsssdr_free(accumulator1); | ||||||
|  |             volk_gnsssdr_free(accumulator2); | ||||||
|  |  | ||||||
|             vst1q_f32((float32_t*)__phase_real, _phase_real); |             vst1q_f32((float32_t*)__phase_real, _phase_real); | ||||||
|             vst1q_f32((float32_t*)__phase_imag, _phase_imag); |             vst1q_f32((float32_t*)__phase_imag, _phase_imag); | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Carles Fernandez
					Carles Fernandez