mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-29 02:14:51 +00:00
Adding new NEON protokernel
Try another strategy based on multiply-and-accumulate for the dot product. In all SIMD protokernels, managing memory with volk_gnsssdr_malloc and volk_gnsssdr_free instead of calloc and free
This commit is contained in:
parent
9cb43ef84a
commit
883cf629d1
@ -71,8 +71,9 @@
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <volk_gnsssdr/saturation_arithmetic.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
//#include <stdio.h>
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
@ -184,13 +185,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
//todo dyn mem reg
|
||||
__m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
__m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
|
||||
realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_setzero_si128();
|
||||
imagcacc[n_vec] = _mm_setzero_si128();
|
||||
}
|
||||
|
||||
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
|
||||
|
||||
@ -308,8 +310,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
volk_gnsssdr_free(realcacc);
|
||||
volk_gnsssdr_free(imagcacc);
|
||||
|
||||
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||
@ -356,13 +358,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(l
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
//todo dyn mem reg
|
||||
__m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
__m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
|
||||
realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_setzero_si128();
|
||||
imagcacc[n_vec] = _mm_setzero_si128();
|
||||
}
|
||||
|
||||
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
|
||||
|
||||
@ -550,8 +553,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(l
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
volk_gnsssdr_free(realcacc);
|
||||
volk_gnsssdr_free(imagcacc);
|
||||
|
||||
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||
@ -598,13 +601,14 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
||||
lv_16sc_t* _out = result;
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
//todo dyn mem reg
|
||||
__m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
__m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
||||
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
|
||||
realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_setzero_si128();
|
||||
imagcacc[n_vec] = _mm_setzero_si128();
|
||||
}
|
||||
|
||||
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
|
||||
|
||||
@ -722,8 +726,8 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
volk_gnsssdr_free(realcacc);
|
||||
volk_gnsssdr_free(imagcacc);
|
||||
|
||||
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||
(*phase) = two_phase_acc[0];
|
||||
@ -792,8 +796,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
|
||||
float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
||||
float32x4_t sign, PlusHalf, Round;
|
||||
|
||||
int16x4x2_t* accumulator;
|
||||
accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t));
|
||||
int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
||||
|
||||
for(int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
@ -904,7 +907,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
free(accumulator);
|
||||
volk_gnsssdr_free(accumulator);
|
||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||
|
||||
@ -976,8 +979,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
||||
float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
||||
float32x4_t sign, PlusHalf, Round;
|
||||
|
||||
int16x4x2_t* accumulator;
|
||||
accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t));
|
||||
int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
||||
|
||||
for(int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
@ -1095,7 +1097,189 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
free(accumulator);
|
||||
volk_gnsssdr_free(accumulator);
|
||||
|
||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||
|
||||
(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
|
||||
}
|
||||
|
||||
for (unsigned int n = neon_iters * 4; n < num_points; n++)
|
||||
{
|
||||
tmp16_ = in_common[n]; //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
||||
tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
|
||||
tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
|
||||
(*phase) *= phase_inc;
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
tmp = tmp16_ * in_a[n_vec][n];
|
||||
_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_NEON */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_NEON
|
||||
#include <arm_neon.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
|
||||
|
||||
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_optvma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
||||
{
|
||||
const unsigned int neon_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t** _in_a = in_a;
|
||||
const lv_16sc_t* _in_common = in_common;
|
||||
lv_16sc_t* _out = result;
|
||||
|
||||
lv_16sc_t tmp16_, tmp;
|
||||
lv_32fc_t tmp32_;
|
||||
|
||||
if (neon_iters > 0)
|
||||
{
|
||||
lv_16sc_t dotProduct = lv_cmake(0,0);
|
||||
float arg_phase0 = cargf(*phase);
|
||||
float arg_phase_inc = cargf(phase_inc);
|
||||
float phase_est;
|
||||
|
||||
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
||||
|
||||
float32x4_t _phase4_real = vld1q_f32(__phase4_real);
|
||||
float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
|
||||
|
||||
lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||
lv_32fc_t phase3 = phase2 * phase_inc;
|
||||
lv_32fc_t phase4 = phase3 * phase_inc;
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||
|
||||
float32x4_t _phase_real = vld1q_f32(__phase_real);
|
||||
float32x4_t _phase_imag = vld1q_f32(__phase_imag);
|
||||
|
||||
int16x4x2_t a_val, b_val;
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
float32x4_t half = vdupq_n_f32(0.5f);
|
||||
int32x4x2_t tmp32i;
|
||||
|
||||
float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
||||
float32x4_t sign, PlusHalf, Round;
|
||||
|
||||
int16x4x2_t* accumulator1 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
||||
int16x4x2_t* accumulator2 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
||||
|
||||
for(int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
accumulator1[n_vec].val[0] = vdup_n_s16(0);
|
||||
accumulator1[n_vec].val[1] = vdup_n_s16(0);
|
||||
accumulator2[n_vec].val[0] = vdup_n_s16(0);
|
||||
accumulator2[n_vec].val[1] = vdup_n_s16(0);
|
||||
}
|
||||
|
||||
for(unsigned int number = 0; number < neon_iters; number++)
|
||||
{
|
||||
/* load 4 complex numbers (int 16 bits each component) */
|
||||
b_val = vld2_s16((int16_t*)_in_common);
|
||||
__builtin_prefetch(_in_common + 8);
|
||||
_in_common += 4;
|
||||
|
||||
/* promote them to int 32 bits */
|
||||
tmp32i.val[0] = vmovl_s16(b_val.val[0]);
|
||||
tmp32i.val[1] = vmovl_s16(b_val.val[1]);
|
||||
|
||||
/* promote them to float 32 bits */
|
||||
tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
||||
tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
||||
|
||||
/* complex multiplication of four complex samples (float 32 bits each component) */
|
||||
tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
||||
tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
||||
tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
||||
tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
||||
|
||||
tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
||||
tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
||||
|
||||
/* downcast results to int32 */
|
||||
/* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
|
||||
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
||||
PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
||||
Round = vsubq_f32(PlusHalf, sign);
|
||||
tmp32i.val[0] = vcvtq_s32_f32(Round);
|
||||
|
||||
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
||||
PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
||||
Round = vsubq_f32(PlusHalf, sign);
|
||||
tmp32i.val[1] = vcvtq_s32_f32(Round);
|
||||
|
||||
/* downcast results to int16 */
|
||||
b_val.val[0] = vqmovn_s32(tmp32i.val[0]);
|
||||
b_val.val[1] = vqmovn_s32(tmp32i.val[1]);
|
||||
|
||||
/* compute next four phases */
|
||||
tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
||||
tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
||||
tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
||||
tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
||||
|
||||
_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
||||
_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
||||
|
||||
// Regenerate phase
|
||||
if ((number % 256) == 0)
|
||||
{
|
||||
//printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
||||
phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
||||
//printf("Estimated phase: %f\n\n", cos(phase_est));
|
||||
|
||||
*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
||||
phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||
phase3 = phase2 * phase_inc;
|
||||
phase4 = phase3 * phase_inc;
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||
|
||||
_phase_real = vld1q_f32(____phase_real);
|
||||
_phase_imag = vld1q_f32(____phase_imag);
|
||||
}
|
||||
|
||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4]));
|
||||
|
||||
// use 2 accumulators to remove inter-instruction data dependencies
|
||||
accumulator1[n_vec].val[0] = vmla_s16(accumulator1[n_vec].val[0], a_val.val[0], b_val.val[0]);
|
||||
accumulator1[n_vec].val[1] = vmla_s16(accumulator1[n_vec].val[1], a_val.val[0], b_val.val[1]);
|
||||
accumulator2[n_vec].val[0] = vmls_s16(accumulator2[n_vec].val[0], a_val.val[1], b_val.val[1]);
|
||||
accumulator2[n_vec].val[1] = vmla_s16(accumulator2[n_vec].val[1], a_val.val[1], b_val.val[0]);
|
||||
}
|
||||
}
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
accumulator1[n_vec].val[0] = vqadd_s16(accumulator1[n_vec].val[0], accumulator2[n_vec].val[0]);
|
||||
accumulator1[n_vec].val[1] = vqadd_s16(accumulator1[n_vec].val[1], accumulator2[n_vec].val[1]);
|
||||
}
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
vst2_s16((int16_t*)dotProductVector, accumulator1[n_vec]); // Store the results back into the dot product vector
|
||||
dotProduct = lv_cmake(0,0);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
||||
sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
volk_gnsssdr_free(accumulator1);
|
||||
volk_gnsssdr_free(accumulator2);
|
||||
|
||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||
|
Loading…
Reference in New Issue
Block a user