mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-10 12:00:04 +00:00
minor cleaning
This commit is contained in:
parent
a10ca1a840
commit
4d072833c5
@ -87,7 +87,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 250;
|
||||
d_code_phase = 0;
|
||||
@ -108,10 +108,10 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
// We can avoid this by doing linear correlation, effectively doubling the
|
||||
// size of the input buffer and padding the code with zeros.
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
|
||||
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
|
||||
@ -131,6 +131,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
}
|
||||
|
||||
|
||||
pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
@ -154,6 +155,7 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// COD
|
||||
@ -162,15 +164,16 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
int offset = 0;
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_samples_per_code;
|
||||
}
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_samples_per_code;
|
||||
}
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
||||
{
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
|
||||
@ -179,6 +182,7 @@ void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int c
|
||||
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Flag_valid_acquisition = false;
|
||||
@ -207,27 +211,27 @@ void pcps_acquisition_cc::init()
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_cc::set_state(int state)
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
}
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
@ -292,27 +296,26 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==true)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
@ -321,7 +324,7 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
@ -330,24 +333,24 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==true)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==false)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
|
||||
}
|
||||
if (d_use_CFAR_algorithm_flag == false)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
@ -358,15 +361,15 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
|
@ -86,7 +86,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 250;
|
||||
d_code_phase = 0;
|
||||
@ -107,10 +107,10 @@ pcps_acquisition_sc::pcps_acquisition_sc(
|
||||
// We can avoid this by doing linear correlation, effectively doubling the
|
||||
// size of the input buffer and padding the code with zeros.
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
|
||||
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
|
||||
@ -132,6 +132,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
}
|
||||
|
||||
|
||||
pcps_acquisition_sc::~pcps_acquisition_sc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
@ -156,6 +157,7 @@ pcps_acquisition_sc::~pcps_acquisition_sc()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// COD
|
||||
@ -164,15 +166,16 @@ void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
int offset = 0;
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_samples_per_code;
|
||||
}
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_samples_per_code;
|
||||
}
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
||||
{
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
|
||||
@ -181,6 +184,7 @@ void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int c
|
||||
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_sc::init()
|
||||
{
|
||||
d_gnss_synchro->Flag_valid_acquisition = false;
|
||||
@ -211,25 +215,25 @@ void pcps_acquisition_sc::init()
|
||||
|
||||
|
||||
void pcps_acquisition_sc::set_state(int state)
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
}
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
}
|
||||
|
||||
int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
@ -294,27 +298,27 @@ int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==true)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
@ -323,7 +327,7 @@ int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
@ -332,26 +336,25 @@ int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==true)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_use_CFAR_algorithm_flag==false)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
|
||||
}
|
||||
if (d_use_CFAR_algorithm_flag == false)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
@ -362,16 +365,16 @@ int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
//std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
//std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
@ -383,13 +386,13 @@ int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_"
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_"
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user