1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-10 12:00:04 +00:00

minor cleaning

This commit is contained in:
Carles Fernandez 2016-04-10 10:29:25 +02:00
parent a10ca1a840
commit 4d072833c5
2 changed files with 137 additions and 131 deletions

View File

@ -87,7 +87,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0;
d_doppler_step = 250;
d_code_phase = 0;
@ -108,10 +108,10 @@ pcps_acquisition_cc::pcps_acquisition_cc(
// We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros.
if( d_bit_transition_flag )
{
d_fft_size *= 2;
d_max_dwells = 1;
}
{
d_fft_size *= 2;
d_max_dwells = 1;
}
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
@ -131,6 +131,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_grid_doppler_wipeoffs = 0;
}
pcps_acquisition_cc::~pcps_acquisition_cc()
{
if (d_num_doppler_bins > 0)
@ -154,6 +155,7 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
}
}
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
{
// COD
@ -162,15 +164,16 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
// where c_i is the local code and there are L zeros and L chips
int offset = 0;
if( d_bit_transition_flag )
{
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
offset = d_samples_per_code;
}
{
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
offset = d_samples_per_code;
}
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
@ -179,6 +182,7 @@ void pcps_acquisition_cc::update_local_carrier(gr_complex* carrier_vector, int c
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
void pcps_acquisition_cc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
@ -207,27 +211,27 @@ void pcps_acquisition_cc::init()
}
void pcps_acquisition_cc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
int pcps_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
@ -292,27 +296,26 @@ int pcps_acquisition_cc::general_work(int noutput_items,
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
if (d_use_CFAR_algorithm_flag==true)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
if (d_use_CFAR_algorithm_flag == true)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
@ -321,7 +324,7 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
@ -330,24 +333,24 @@ int pcps_acquisition_cc::general_work(int noutput_items,
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag==true)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
if (d_use_CFAR_algorithm_flag == true)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (d_use_CFAR_algorithm_flag==false)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
}
if (d_use_CFAR_algorithm_flag == false)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
}
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
@ -358,15 +361,15 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required

View File

@ -86,7 +86,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_use_CFAR_algorithm_flag=use_CFAR_algorithm_flag;
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0;
d_doppler_step = 250;
d_code_phase = 0;
@ -107,10 +107,10 @@ pcps_acquisition_sc::pcps_acquisition_sc(
// We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros.
if( d_bit_transition_flag )
{
d_fft_size *= 2;
d_max_dwells = 1;
}
{
d_fft_size *= 2;
d_max_dwells = 1;
}
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
@ -132,6 +132,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_grid_doppler_wipeoffs = 0;
}
pcps_acquisition_sc::~pcps_acquisition_sc()
{
if (d_num_doppler_bins > 0)
@ -156,6 +157,7 @@ pcps_acquisition_sc::~pcps_acquisition_sc()
}
}
void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
{
// COD
@ -164,15 +166,16 @@ void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
// where c_i is the local code and there are L zeros and L chips
int offset = 0;
if( d_bit_transition_flag )
{
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
offset = d_samples_per_code;
}
{
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
offset = d_samples_per_code;
}
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
@ -181,6 +184,7 @@ void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int c
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
void pcps_acquisition_sc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
@ -211,25 +215,25 @@ void pcps_acquisition_sc::init()
void pcps_acquisition_sc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
int pcps_acquisition_sc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
@ -294,27 +298,27 @@ int pcps_acquisition_sc::general_work(int noutput_items,
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
if (d_use_CFAR_algorithm_flag==true)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
if (d_use_CFAR_algorithm_flag == true)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
@ -323,7 +327,7 @@ int pcps_acquisition_sc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
@ -332,26 +336,25 @@ int pcps_acquisition_sc::general_work(int noutput_items,
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag==true)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag == true)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (d_use_CFAR_algorithm_flag==false)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power=(d_input_power-d_mag)/(effective_fft_size-1);
}
if (d_use_CFAR_algorithm_flag == false)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
}
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
@ -362,16 +365,16 @@ int pcps_acquisition_sc::general_work(int noutput_items,
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
// 5- Compute the test statistics and compare to the threshold
d_test_statistics = d_mag / d_input_power;
//std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
// 5- Compute the test statistics and compare to the threshold
d_test_statistics = d_mag / d_input_power;
//std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
}
}
}
// Record results to file if required
@ -383,13 +386,13 @@ int pcps_acquisition_sc::general_work(int noutput_items,
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator
<< p.stem().string()
<< "_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_"
<< doppler
<< p.extension().string();
<< boost::filesystem::path::preferred_separator
<< p.stem().string()
<< "_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_"
<< doppler
<< p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str();