1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-05 17:46:25 +00:00
gnss-sdr/src/algorithms/libs/gps_l2c_signal.cc

129 lines
4.0 KiB
C++
Raw Normal View History

/*!
* \file gps_l2c_signal.cc
* \brief This class implements signal generators for the GPS L2C signals
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "GPS_L2C.h"
#include <stdlib.h>
#include <stdint.h>
#include <cmath>
int32_t gps_l2c_m_shift(int32_t x)
{
return (int32_t)((x>>1)^((x&1)*0445112474));
}
void gps_l2c_m_code(int32_t * _dest, unsigned int _prn)
{
int32_t x;
x= GPS_L2C_M_INIT_REG[_prn-1];
for (int n=0; n<GPS_L2_M_CODE_LENGTH_CHIPS; n++)
{
_dest[n]=(int8_t)(x&1);
x= gps_l2c_m_shift(x);
}
}
void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, unsigned int _prn)
{
int32_t _code[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn>0 and _prn<51)
{
gps_l2c_m_code(_code, _prn);
}
for (signed int i=0; i<GPS_L2_M_CODE_LENGTH_CHIPS; i++)
{
_dest[i] = std::complex<float>(1.0-2.0*_code[i],0);
}
}
/*
* Generates complex GPS L2C M code for the desired SV ID and sampled to specific sampling frequency
*/
void gps_l2c_m_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, signed int _fs)
{
int32_t _code[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn>0 and _prn<51)
{
gps_l2c_m_code(_code, _prn);
}
signed int _samplesPerCode, _codeValueIndex;
float _ts;
float _tc;
const signed int _codeFreqBasis = GPS_L2_M_CODE_RATE_HZ; //Hz
const signed int _codeLength = GPS_L2_M_CODE_LENGTH_CHIPS;
//--- Find number of samples per spreading code ----------------------------
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
//--- Find time constants --------------------------------------------------
_ts = 1/(float)_fs; // Sampling period in sec
_tc = 1/(float)_codeFreqBasis; // C/A chip period in sec
for (signed int i=0; i<_samplesPerCode; i++)
{
//=== Digitizing =======================================================
//--- Make index array to read C/A code values -------------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
//TODO: Check this formula! Seems to start with an extra sample
_codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
//--- Make the digitized version of the C/A code -----------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0-2.0*_code[_codeLength - 1],0);
}
else
{
_dest[i] = std::complex<float>(1.0-2.0*_code[_codeValueIndex],0);; //repeat the chip -> upsample
}
}
}