1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-05 17:46:25 +00:00
gnss-sdr/src/algorithms/PVT/libs/rtklib_solver.cc

593 lines
34 KiB
C++
Raw Normal View History

/*!
* \file rtklib_solver.cc
* \brief PVT solver based on rtklib library functions adapted to the GNSS-SDR
* data flow and structures
* \authors <ul>
* <li> 2017, Javier Arribas
* <li> 2017, Carles Fernandez
* <li> 2007-2013, T. Takasu
* </ul>
*
* This is a derived work from RTKLIB http://www.rtklib.com/
* The original source code at https://github.com/tomojitakasu/RTKLIB is
* released under the BSD 2-clause license with an additional exclusive clause
* that does not apply here. This additional clause is reproduced below:
*
* " The software package includes some companion executive binaries or shared
* libraries necessary to execute APs on Windows. These licenses succeed to the
* original ones of these software. "
*
* Neither the executive binaries nor the shared libraries are required by, used
* or included in GNSS-SDR.
*
* -------------------------------------------------------------------------
* Copyright (C) 2007-2013, T. Takasu
* Copyright (C) 2017, Javier Arribas
* Copyright (C) 2017, Carles Fernandez
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2017-05-08 19:30:41 +00:00
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* -----------------------------------------------------------------------*/
2017-04-25 15:50:25 +00:00
#include "rtklib_solver.h"
#include "rtklib_conversions.h"
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
2018-03-26 13:06:14 +00:00
#include "GLONASS_L1_L2_CA.h"
#include <glog/logging.h>
2017-04-25 15:50:25 +00:00
using google::LogMessage;
rtklib_solver::rtklib_solver(int nchannels, std::string dump_filename, bool flag_dump_to_file, rtk_t& rtk)
{
// init empty ephemeris for all the available GNSS channels
d_nchannels = nchannels;
d_dump_filename = dump_filename;
d_flag_dump_enabled = flag_dump_to_file;
count_valid_position = 0;
this->set_averaging_flag(false);
rtk_ = rtk;
for (unsigned int i = 0; i < 4; i++) dop_[i] = 0.0;
pvt_sol = {{0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, '0', '0', '0', 0, 0, 0};
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
2017-08-15 23:01:59 +00:00
if (d_dump_file.is_open() == false)
{
try
{
2017-08-15 23:01:59 +00:00
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure& e)
{
2017-08-15 23:01:59 +00:00
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
2017-08-15 23:01:59 +00:00
}
}
}
rtklib_solver::~rtklib_solver()
{
2017-08-15 23:01:59 +00:00
if (d_dump_file.is_open() == true)
{
try
{
2017-08-15 23:01:59 +00:00
d_dump_file.close();
}
catch (const std::exception& ex)
{
2017-08-15 23:01:59 +00:00
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
2017-08-15 23:01:59 +00:00
}
}
2017-05-08 19:30:41 +00:00
double rtklib_solver::get_gdop() const
{
return dop_[0];
}
double rtklib_solver::get_pdop() const
{
return dop_[1];
}
double rtklib_solver::get_hdop() const
{
return dop_[2];
}
double rtklib_solver::get_vdop() const
{
return dop_[3];
}
bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro>& gnss_observables_map, bool flag_averaging)
{
std::map<int, Gnss_Synchro>::const_iterator gnss_observables_iter;
std::map<int, Galileo_Ephemeris>::const_iterator galileo_ephemeris_iter;
std::map<int, Gps_Ephemeris>::const_iterator gps_ephemeris_iter;
std::map<int, Gps_CNAV_Ephemeris>::const_iterator gps_cnav_ephemeris_iter;
std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter;
const Glonass_Gnav_Utc_Model gnav_utc = this->glonass_gnav_utc_model;
this->set_averaging_flag(flag_averaging);
// ********************************************************************************
// ****** PREPARE THE DATA (SV EPHEMERIS AND OBSERVATIONS) ************************
// ********************************************************************************
int valid_obs = 0; // valid observations counter
int glo_valid_obs = 0; // GLONASS L1/L2 valid observations counter
obsd_t obs_data[MAXOBS];
2018-03-09 12:05:25 +00:00
eph_t eph_data[MAXOBS];
geph_t geph_data[MAXOBS];
// Workaround for NAV/CNAV clash problem
bool gps_dual_band = false;
bool band1 = false;
bool band2 = false;
2018-03-09 12:05:25 +00:00
for (gnss_observables_iter = gnss_observables_map.cbegin();
gnss_observables_iter != gnss_observables_map.cend();
++gnss_observables_iter)
{
switch (gnss_observables_iter->second.System)
{
case 'G':
{
std::string sig_(gnss_observables_iter->second.Signal);
if (sig_.compare("1C") == 0)
{
band1 = true;
}
if (sig_.compare("2S") == 0)
{
band2 = true;
}
}
2018-08-07 17:59:44 +00:00
break;
default:
{
}
}
}
if (band1 == true and band2 == true) gps_dual_band = true;
for (gnss_observables_iter = gnss_observables_map.cbegin();
gnss_observables_iter != gnss_observables_map.cend();
++gnss_observables_iter) // CHECK INCONSISTENCY when combining GLONASS + other system
{
switch (gnss_observables_iter->second.System)
{
case 'E':
{
std::string sig_(gnss_observables_iter->second.Signal);
// Galileo E1
if (sig_.compare("1B") == 0)
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN_5,
0);
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
2017-08-15 23:01:59 +00:00
// Galileo E5
if (sig_.compare("5X") == 0)
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
{
bool found_E1_obs = false;
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN + NSATGPS + NSATGLO)))
{
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i + glo_valid_obs],
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN_5,
2); // Band 3 (L5/E5)
found_E1_obs = true;
break;
}
}
if (!found_E1_obs)
{
// insert Galileo E5 obs as new obs and also insert its ephemeris
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN_5,
2); // Band 3 (L5/E5)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
case 'G':
{
// GPS L1
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
std::string sig_(gnss_observables_iter->second.Signal);
if (sig_.compare("1C") == 0)
{
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
gps_ephemeris_iter->second.i_GPS_week,
0);
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
}
}
// GPS L2 (todo: solve NAV/CNAV clash)
if ((sig_.compare("2S") == 0) and (gps_dual_band == false))
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
{
// 1. Find the same satellite in GPS L1 band
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
2018-04-03 10:45:03 +00:00
/* By the moment, GPS L2 observables are not used in pseudorange computations if GPS L1 is available
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L2 ephemeris
// (more precise!), and attach the L2 observation to the L1 observation in RTKLIB structure
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == static_cast<int>(gnss_observables_iter->second.PRN))
{
2018-03-12 09:51:06 +00:00
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i + glo_valid_obs],
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
2018-03-09 12:05:25 +00:00
eph_data[i].week,
1); // Band 2 (L2)
break;
}
}
2018-04-03 10:45:03 +00:00
*/
}
else
2018-03-12 09:51:06 +00:00
{
// 3. If not found, insert the GPS L2 ephemeris and the observation
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
2017-11-30 15:04:20 +00:00
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
2017-08-15 23:01:59 +00:00
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.i_GPS_week,
1); // Band 2 (L2)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// GPS L5
if (sig_.compare("L5") == 0)
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
{
// 1. Find the same satellite in GPS L1 band
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L5 ephemeris
// (more precise!), and attach the L5 observation to the L1 observation in RTKLIB structure
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == static_cast<int>(gnss_observables_iter->second.PRN))
{
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i],
2017-11-30 15:04:20 +00:00
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.i_GPS_week,
2); // Band 3 (L5)
break;
}
}
}
else
{
// 3. If not found, insert the GPS L5 ephemeris and the observation
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
2017-11-30 15:04:20 +00:00
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
2017-11-30 15:04:20 +00:00
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.i_GPS_week,
2); // Band 3 (L5)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
case 'R': //TODO This should be using rtk lib nomenclature
{
std::string sig_(gnss_observables_iter->second.Signal);
// GLONASS GNAV L1
if (sig_.compare("1G") == 0)
{
// 1 Glo - find the ephemeris for the current GLONASS SV observation. The SV Slot Number (PRN ID) is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
0); // Band 0 (L1)
glo_valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// GLONASS GNAV L2
if (sig_.compare("2G") == 0)
{
// 1 GLONASS - find the ephemeris for the current GLONASS SV observation. The SV PRN ID is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
bool found_L1_obs = false;
for (int i = 0; i < glo_valid_obs; i++)
{
if (geph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN + NSATGPS)))
{
obs_data[i + valid_obs] = insert_obs_to_rtklib(obs_data[i + valid_obs],
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); //Band 1 (L2)
found_L1_obs = true;
break;
}
}
if (!found_L1_obs)
{
// insert GLONASS GNAV L2 obs as new obs and also insert its ephemeris
// convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); // Band 1 (L2)
glo_valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
default:
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
2017-08-15 23:01:59 +00:00
break;
}
}
2017-08-15 23:01:59 +00:00
// **********************************************************************
// ****** SOLVE PVT******************************************************
// **********************************************************************
this->set_valid_position(false);
2018-03-08 17:05:22 +00:00
if ((valid_obs + glo_valid_obs) > 3)
{
2017-05-08 19:30:41 +00:00
int result = 0;
nav_t nav_data;
nav_data.eph = eph_data;
nav_data.geph = geph_data;
2017-05-08 19:30:41 +00:00
nav_data.n = valid_obs;
nav_data.ng = glo_valid_obs;
2017-05-08 19:30:41 +00:00
for (int i = 0; i < MAXSAT; i++)
2017-08-15 23:01:59 +00:00
{
nav_data.lam[i][0] = SPEED_OF_LIGHT / FREQ1; /* L1/E1 */
nav_data.lam[i][1] = SPEED_OF_LIGHT / FREQ2; /* L2 */
nav_data.lam[i][2] = SPEED_OF_LIGHT / FREQ5; /* L5/E5 */
}
result = rtkpos(&rtk_, obs_data, valid_obs + glo_valid_obs, &nav_data);
if (result == 0)
2017-08-15 23:01:59 +00:00
{
2018-02-12 11:46:08 +00:00
LOG(INFO) << "RTKLIB rtkpos error";
2017-12-20 15:12:08 +00:00
DLOG(INFO) << "RTKLIB rtkpos error message: " << rtk_.errbuf;
this->set_time_offset_s(0.0); //reset rx time estimation
this->set_num_valid_observations(0);
2017-08-15 23:01:59 +00:00
}
2017-05-08 19:30:41 +00:00
else
2017-08-15 23:01:59 +00:00
{
this->set_num_valid_observations(rtk_.sol.ns); //record the number of valid satellites used by the PVT solver
2017-08-15 23:01:59 +00:00
pvt_sol = rtk_.sol;
2018-05-07 12:34:53 +00:00
// DOP computation
unsigned int used_sats = 0;
for (unsigned int i = 0; i < MAXSAT; i++)
{
2018-05-16 16:32:27 +00:00
if (rtk_.ssat[i].vsat[0] == 1) used_sats++;
}
2018-05-07 12:34:53 +00:00
std::vector<double> azel;
azel.reserve(used_sats * 2);
2018-05-07 12:34:53 +00:00
unsigned int index_aux = 0;
for (unsigned int i = 0; i < MAXSAT; i++)
{
2018-05-16 16:32:27 +00:00
if (rtk_.ssat[i].vsat[0] == 1)
2018-05-07 12:34:53 +00:00
{
azel[2 * index_aux] = rtk_.ssat[i].azel[0];
azel[2 * index_aux + 1] = rtk_.ssat[i].azel[1];
index_aux++;
}
}
if (index_aux > 0) dops(index_aux, azel.data(), 0.0, dop_);
2018-05-07 12:34:53 +00:00
this->set_valid_position(true);
2017-08-15 23:01:59 +00:00
arma::vec rx_position_and_time(4);
rx_position_and_time(0) = pvt_sol.rr[0]; // [m]
rx_position_and_time(1) = pvt_sol.rr[1]; // [m]
rx_position_and_time(2) = pvt_sol.rr[2]; // [m]
//todo: fix this ambiguity in the RTKLIB units in receiver clock offset!
if (rtk_.opt.mode == PMODE_SINGLE)
{
rx_position_and_time(3) = pvt_sol.dtr[0]; // if the RTKLIB solver is set to SINGLE, the dtr is already expressed in [s]
}
else
{
rx_position_and_time(3) = pvt_sol.dtr[0] / GPS_C_m_s; // the receiver clock offset is expressed in [meters], so we convert it into [s]
}
this->set_rx_pos(rx_position_and_time.rows(0, 2)); // save ECEF position for the next iteration
//observable fix:
//double offset_s = this->get_time_offset_s();
//this->set_time_offset_s(offset_s + (rx_position_and_time(3) / GPS_C_m_s)); // accumulate the rx time error for the next iteration [meters]->[seconds]
this->set_time_offset_s(rx_position_and_time(3));
DLOG(INFO) << "RTKLIB Position at RX TOW = " << gnss_observables_map.begin()->second.RX_time
<< " in ECEF (X,Y,Z,t[meters]) = " << rx_position_and_time;
2017-05-08 19:30:41 +00:00
2017-08-15 23:01:59 +00:00
boost::posix_time::ptime p_time;
// gtime_t rtklib_utc_time = gpst2utc(pvt_sol.time); //Corrected RX Time (Non integer multiply of 1 ms of granularity)
// Uncorrected RX Time (integer multiply of 1 ms and the same observables time reported in RTCM and RINEX)
gtime_t rtklib_time = gpst2time(adjgpsweek(nav_data.eph[0].week), gnss_observables_map.begin()->second.RX_time);
gtime_t rtklib_utc_time = gpst2utc(rtklib_time);
2017-08-15 23:01:59 +00:00
p_time = boost::posix_time::from_time_t(rtklib_utc_time.time);
2018-06-15 15:20:01 +00:00
p_time += boost::posix_time::microseconds(static_cast<long>(round(rtklib_utc_time.sec * 1e6)));
this->set_position_UTC_time(p_time);
2017-08-15 23:01:59 +00:00
cart2geo(static_cast<double>(rx_position_and_time(0)), static_cast<double>(rx_position_and_time(1)), static_cast<double>(rx_position_and_time(2)), 4);
2017-05-08 19:30:41 +00:00
2017-08-15 23:01:59 +00:00
DLOG(INFO) << "RTKLIB Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << this->get_latitude() << " [deg], Long = " << this->get_longitude()
<< " [deg], Height= " << this->get_height() << " [m]"
<< " RX time offset= " << this->get_time_offset_s() << " [s]";
2017-05-08 19:30:41 +00:00
2017-08-15 23:01:59 +00:00
// ######## LOG FILE #########
if (d_flag_dump_enabled == true)
2017-08-15 23:01:59 +00:00
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
2017-08-15 23:01:59 +00:00
double tmp_double;
// PVT GPS time
tmp_double = gnss_observables_map.begin()->second.RX_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// ECEF User Position East [m]
tmp_double = rx_position_and_time(0);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// ECEF User Position North [m]
tmp_double = rx_position_and_time(1);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// ECEF User Position Up [m]
tmp_double = rx_position_and_time(2);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// User clock offset [s]
tmp_double = rx_position_and_time(3);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// GEO user position Latitude [deg]
tmp_double = this->get_latitude();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// GEO user position Longitude [deg]
tmp_double = this->get_longitude();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
2017-08-15 23:01:59 +00:00
// GEO user position Height [m]
tmp_double = this->get_height();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
2017-08-15 23:01:59 +00:00
catch (const std::ifstream::failure& e)
{
2017-08-15 23:01:59 +00:00
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
}
2017-08-15 23:01:59 +00:00
}
}
}
2018-03-08 17:05:22 +00:00
return is_valid_position();
}