Peripherals can now have multiple types:
- A single primary type. This is the same as the current idea of a
type - some identifier which (mostly) uniquely identifies this kind
of peripheral. For instance, "speaker" or "minecraft:chest".
- 0 or more "additional" types. These are more like traits, and
describe what other behaviour the peripheral has - is it an
inventory? Does it supply additional peripherals (like a wired
modem)?.
This is mostly intended for the generic peripheral system, but it might
prove useful elsewhere too - we'll have to see!
- peripheral.getType (and modem.getTypeRemote) now returns 1 or more
values, rather than exactly one.
- Add a new peripheral.hasType (and modem.hasTypeRemote) function which
determines if a peripheral has the given type (primary or
additional).
- Change peripheral.find and all internal peripheral methods to use
peripheral.hasType instead.
- Update the peripherals program to show all types
This effectively allows you to do things like
`peripheral.find("inventory")` to find all inventories.
This also rewrites the introduction to the peripheral API, hopefully
making it a little more useful.
- Capability invalidation and tile/block entity changes set a dirty bit
instead of refetching the peripheral immediately.
- Then on the block's tick we recompute the peripheral if the dirty bit
is set.
Fixes#696 and probably fixes#882. Some way towards #893, but not
everything yet.
This is probably going to break things horribly. Let's find out!
- Bump copy-cat version to have support for initial files in
directories and the blit fixes.
- Add an example nft image and move example nfp into a data/ directory.
- Fix nft parser not resetting colours on the start of each line.
- Adds cct-javadoc fun and renables checkstyle (yay?)
- Fixes a few javadoc and formatting issues
- Cherry pick the docs so illuaminate doesn't complain
The feature nobody asked for, but we're getting anyway.
Old way to register a turtle/pocket computer upgrade:
ComputerCraftAPI.registerTurtleUpgrade(new MyUpgrade(new ResourceLocation("my_mod", "my_upgrade")));
New way to register a turtle/pocket computer upgrade:
First, define a serialiser for your turtle upgrade type:
static final DeferredRegister<TurtleUpgradeSerialiser<?>> SERIALISERS = DeferredRegister.create( TurtleUpgradeSerialiser.TYPE, "my_mod" );
public static final RegistryObject<TurtleUpgradeSerialiser<MyUpgrade>> MY_UPGRADE =
SERIALISERS.register( "my_upgrade", () -> TurtleUpgradeSerialiser.simple( MyUpgrade::new ) );
SERIALISERS.register(bus); // Call in your mod constructor.
Now either create a JSON string or use a data generator to register your upgrades:
class TurtleDataGenerator extends TurtleUpgradeDataProvider {
@Override
protected void addUpgrades( @Nonnull Consumer<Upgrade<TurtleUpgradeSerialiser<?>>> addUpgrade )
simple(new ResourceLocation("my_mod", my_upgrade"), MY_UPGRADE.get()).add(addUpgrade);
}
}
See much better! In all seriousness, this does offer some benefits,
namely that it's now possible to overwrite or create upgrades via
datapacks.
Actual changes:
- Remove ComputerCraftAPI.register{Turtle,Pocket}Upgrade functions.
- Instead add {Turtle,Pocket}UpgradeSerialiser classes, which are used
to load upgrades from JSON files in datapacks, and then read/write
them to network packets (much like recipe serialisers).
- The upgrade registries now subscribe to datapack reload events. They
find all JSON files in the
data/$mod_id/computercraft/{turtle,pocket}_upgrades directories,
parse them, and then register them as upgrades.
Once datapacks have fully reloaded, these upgrades are then sent over
the network to the client.
- Add data generators for turtle and pocket computer upgrades, to make
the creation of JSON files a bit easier.
- Port all of CC:T's upgrades over to use the new system.
- Subscribe to the "on add reload listener" event, otherwise we don't
get reloads beyond the first one! This means we no longer need to
cast the resource manager to a reloadable one.
- Change the mount cache so it's keyed on path, rather than "path ✕
manager".
- Update the reload listener just to use the mount cache, rather than
having its own separate list. I really don't understand what I was
thinking before.
- Some improvements to validation of monitors. This rejects monitors
with invalid dimensions, specifically those with a width or height
of 0. Should fix#922.
- Simplify monitor collapsing a little. This now just attempts to
resize the four "corner" monitors (where present) and then expands
them if needed. Fixes#913.
- Rewrite monitor expansion so that it's no longer recursive. Instead
we track the "origin" monitor and replace it whenever we resize to
the left or upwards.
Also add a upper bound on the loop count, which should prevent things
like #922 happening again. Though as mentioned above, validation
should prevent this anyway.
- Some small bits of cleanup to general monitor code.
I have absolutely no confidence that this code is any better behaved
than the previous version. Let's find out I guess!
- Add a new GenericPeripheral interface. We don't strictly speaking
need this - could put this on GenericSource - but the separation
seems cleaner.
- GenericPeripheral.getType() returns a new PeripheralType class, which
can either be untyped() or specify a type name. This is a little
over-engineered (could just be a nullable string), but I'm planning
to allow multiple types in the future, so want some level of
future-proofing.
- Thread this PeripheralType through the method gathering code and
expose it to the GenericPeripheralProvider, which then chooses an
appropriate name.
This is a little ugly (we're leaking information about peripherals
everywhere), but I think is fine for now. It's all private internals
after all!
Closes#830
- Move TaskCallback into the API and make it package private. This
effectively means it's not an API class, just exists there for
convenience reasons.
- Replace any usage of TaskCallback.make with
ILuaContext.executeMainThreadTask.
- Some minor formatting/checkstyle changes to bring us inline with
IntelliJ config.