I didn't make a new years resolution to stop writing build tooling, but
maybe I should have.
This replaces our use of VanillaGradle with a new project,
VanillaExtract. This offers a couple of useful features for multi-loader
dev, including Parchment and Unpick support, both of which we now use in
CC:T.
- Debug hooks are now correctly called for every function.
- Fix several minor inconsistencies with debug.getinfo.
- Fix Lua tables being sized incorrectly when created from varargs.
- Update FG to 6.0.20 - no major changes, but required for the Gradle
update.
- Update Loom to 1.5.x - this adds Vineflower support by default, so we
can remove loom-vineflower.
- Add a check to ensure declared dependencies in the :core project, and
those inherited from Minecraft are the same.
- Compute the next Cobalt version, rather than specifying it manually.
- Add the gradle versions plugin (and version catalog update), and
update some versions.
This commit adds abstract classes to describe the interface for our
mod-loader-specific generic peripherals (inventories, fluid storage,
item storage).
This offers several advantages:
- Javadoc to illuaminate conversion no longer needs the Forge project
(just core and common).
- Ensures we have a consistent interface between Forge and Fabric.
Note, this does /not/ implement fluid or energy storage for Fabric. We
probably could do fluid without issue, but not something worth doing
right now.
- Update Cobalt to 0.8.0, switching our Lua version to 5.2(ish).
- Remove our `load` wrapper, as we no longer need to inject _ENV into
the enviroment table.
- Update the parser to handle labels and goto. This doesn't check that
gotos are well formed, but at least means the parser doesn't fall
over on them.
- Update our docs to reflect the changes to Cobalt.
Does it count as an emulator when it's official? I hope not, as this'd
make it my fourth or fifth emulator at this point.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Developing/debugging CraftOS is a massive pain to do inside Minecraft,
as any change to resources requires a compile+hot swap cycle (and
sometimes a `/reload` in-game). As such, it's often more convenient to
spin up an emulator, pointing it to load the ROM from CC:T's sources.
However, this isn't practical when also making changes to the Java
classes. In this case, we either need to go in-game, or build a custom
version of CCEmuX.
This commit offers an alternative option: we now have our own emulator,
which allows us to hot swap both Lua and Java to our heart's content.
Most of the code here is based on our monitor TBO renderer. We probably
could share some more of this, but there's not really a good place for
it - feels a bit weird just to chuck it in :core.
This is *not* a general-purpose emulator. It's limited in a lot of
ways (won't launch on Mac[^1], no support for multiple computers) - just
stick to what's there already.
[^1]: We require OpenGL 4.5 due to our use of DSA.
Historically we've used copy-cat to provide a web-based emulator for
running example code on our documentation site. However, copy-cat is
often out-of-date with CC:T, which means example snippets fail when you
try to run them!
This commit vendors in copy-cat (or rather an updated version of it)
into CC:T itself, allowing us to ensure the emulator is always in sync
with the mod.
While the ARCHITECTURE.md documentation goes into a little bit more
detail here, the general implementation is as follows
- In project/src/main we implement the core of the emulator. This
includes a basic reimplementation of some of CC's classes to work on
the web (mostly the HTTP API and ComputerThread), and some additional
code to expose the computers to Javascript.
- This is all then compiled to Javascript using [TeaVM][1] (we actually
use a [personal fork of it][2] as there's a couple of changes I've
not upstreamed yet).
- The Javascript side then pulls in the these compiled classes (and
the CC ROM) and hooks them up to [cc-web-term][3] to display the
actual computer.
- As we're no longer pulling in copy-cat, we can simplify our bundling
system a little - we now just compile to ESM modules directly.
[1]: https://github.com/konsoletyper/teavm
[2]: https://github.com/SquidDev/teavm/tree/squid-patches
[3]: https://github.com/squiddev-cc/cc-web-term
When the target method is in a different class loader to CC, our
generated method fails, as it cannot find the target class. To get
around that, we create a MethodHandle to the target method, and then
inject that into the generated class (with Java's new dynamic constant
system). We can then invoke the MethodHandle in our generated code,
avoiding any references to the target class/method.
I removed this in aa0d544bba, way back in
late 2021. Looks like it's been updating in the meantime and I hadn't
noticed, so add it back.
I've simplified the code a little bit, to make use of our new capability
helpers, but otherwise it's almost exactly the same :D.
- Add a generic PermissionRegistry interface. This behaves similarly to
our ShaderMod interface, searching all providers until it finds a
compatible one.
We could just make this part of the platform code instead, but this
allows us to support multiple systems on Fabric, where things are
less standardised.
This interface behaves like a registry, rather than a straight
`getPermission(node, player)` method, as Forge requires us to list
our nodes up-front.
- Add Forge (using the built-in system) and Fabric (using
fabric-permissions-api) implementations of the above interface.
- Register permission nodes for our commands, and use those
instead. This does mean that the permissions check for the root
/computercraft command now requires enumerating all child
commands (and so potential does 7 permission lookups), but hopefully
this isn't too bad in practice.
- Remove UserLevel.OWNER - we never used this anywhere, and I can't
imagine we'll want to in the future.
- Support printing and parsing hex float literals
- Fix string.format "%q"'s handling of nan and inf (Kan18)
- Fix string is-letter/is-digit patterns treating characters as
unicode.
- tostring(...) now uses __name.
- Overhaul model loading to work with the new API. This allows for
using the emissive texture system in a more generic way, which is
nice!
- Convert some of our custom models to use Fabric's model hooks (i.e.
emitItemQuads). We don't make use of this right now, but might be
useful for rendering tools with enchantment glints.
Note this does /not/ change any of the turtle block entity rendering
code to use Fabric/Forge's model code. This will be a change we want
to make in the future.
- Some cleanup of our config API. This fixes us printing lots of
warnings when creating a new config file on Fabric (same bug also
occurs on Forge, but that's a loader problem).
- Fix a few warnings
We switched to Forge's loot modifier system in the 1.20 update, as
LootTable.addPool had been removed. Turns out this was by accident, and
so we switch back to the previous implementation, as it's much simpler
and efficient.
- Update to Loom 1.2 and FG 6.0. ForgeGradle has changed how it
generates the runXyz tasks, which makes running our tests much
harder. I've raised an issue upstream, but for now we do some nasty
poking of internals.
- Fix Sodium/Iris tests. Loom 1.1 changed how remapped configurations
are generated - we create a dummy source set and associate the
remapped configuration with that. All nasty stuff.
- Publish the common library. I'm not a fan of this, but given how much
internals I'm poking elsewhere, should probably get off my high
horse.
- Add renderdoc support to the client gametests, enabled with
-Prenderdoc.
- Use GuiGraphics for rendering UI elements. Almost definitely some
z-fighting issues slipped in here.
- Use Forge's loot modifier system for handling treasure disks. I have
mixed feelings about this - it's a nice system, but also is far less
efficient than the previous approach.
- Regenerate data. This is the brunt of the commit, but nothing
especially interesting here.
In this case, we use Lua's tostring(x) semantics (well, modulo
metamethods), instead of Java's Object.toString(x) call. This ensures
that values are formatted (mostly) consistently between Lua and Java
methods.
- Add IArguments.getStringCoerced, which uses Lua's tostring semantics.
- Add a Coerced<T> wrapper type, which says to use the .getXCoerced
methods. I'm not thrilled about this interface - there's definitely
an argument for using annotations - but this is probably more
consistent for now.
- Convert existing methods to use this call.
Closes#1445
This is a little more general than InventoryStorage and means we can get
rid of our nasty double chest hack.
The generic peripheral system doesn't currently support generics (hah),
and so we need to use a wrapper class for now.