Look, I originally had this split into several commits, but lots of
other cleanups got mixed in. I then backported some of the cleanups to
1.12, did other tidy ups there, and eventually the web of merges was
unreadable.
Yes, this is a horrible mess, but it's still nicer than it was. Anyway,
changes:
- Flatten everything. For instance, there are now three instances of
BlockComputer, two BlockTurtle, ItemPocketComputer. There's also no
more BlockPeripheral (thank heavens) - there's separate block classes
for each peripheral type.
- Remove pretty much all legacy code. As we're breaking world
compatibility anyway, we can remove all the code to load worlds from
1.4 days.
- The command system is largely rewriten to take advantage of 1.13's
new system. It's very fancy!
- WidgetTerminal now uses Minecraft's "GUI listener" system.
- BREAKING CHANGE: All the codes in keys.lua are different, due to the
move to LWJGL 3. Hopefully this won't have too much of an impact.
I don't want to map to the old key codes on the Java side, as there
always ends up being small but slight inconsistencies. IMO it's
better to make a clean break - people should be using keys rather
than hard coding the constants anyway.
- commands.list now allows fetching sub-commands. The ROM has already
been updated to allow fancy usage such as commands.time.set("noon").
- Turtles, modems and cables can be waterlogged.
OK, so let's get this out of the way, there's some actual changes mixed
in here too. I'm really sorry:
- Turtles can now not be renamed with unnamed item tags (previously it
would clear the name, this seemed a little unideal).
- commands.getBlock(s)Data will also include NBT.
Now, onto the horror story which is these inspection changes:
- Make a lot of methods static
- Typo fixes
- Make utility classes final + private constructor
- Lots of reformatting (ifs -> ternary, invert control flow, etc...)
- ???
- Profit!
I'm so going to regret this - can pretty much guarantee this is going to
break something.
- Share the ILuaContext across all method calls, as well as shifting it
into an anonymous class.
- Move the load/loadstring prefixing into bios.lua
- Be less militant in prefixing chunk names:
- load will no longer do any auto-prefixing.
- loadstring will not prefix when there no chunk name is supplied.
Before we would do `"=" .. supplied_program`, which made no sense.
For instance, `pastebin run https://pastebin.com/LYAxmSby` will now
extract the code and download appropriately. Also add an error message
when we received something which is not a valid pastebin code.
See #134.
This runs tests on CraftOS using a tiny test runner that I originally
knocked up for LuaDash. It can be run both from JUnit (so IDEA and
Gradle) and in-game in the shell, so is pretty accessible to work with.
I also add a very basic POC test for the io library. I'd like to flesh
this out soon enough to contain most of the things from the original io
test.
TimeoutState now introduces a TIMESLICE, which is the maximum period of
time a computer can run before we will look into pausing it.
When we have executed a task for more than this period, and if there are
other computers waiting to execute work, then we will suspend the
machine.
Suspending the machine sets a flag on the ComputerExecutor, and pauses
the "cumulative" time - the time spent handling this particular event.
When resuming the machine, we restart our timer and resume the machine.
Oh goodness, when will it end?
- Computer errors are shown in red.
- Lua machine operations provide whether they succeeded, and an
optional error message (reason bios failed to load, timeout error,
another Lua error), which is then shown to the user.
- Clear the Cobalt "thrown soft abort" flag when resuming, rather than
every n instructions.
- Computers will clear their "should start" flag once the time has
expired, irrespective of whether it turned on or not. Before
computers would immediately restart after shutting down if the flag
had been set much earlier.
Errors within the Lua machine are displayed in a more friendly
- Move state management (turnOn, shutdown, etc...) event handling and
the command queue into a ComputerExecutor
- This means the computer thread now just handles running "work" on
computer executors, rather than managing a separate command queue +
requeuing it.
Ideally we'd add a couple more tests in the future, but this'll do for
now.
The bootstrap class is largely yoinked from CCTweaks-Lua, so is a tad
ugly. It works though.
FileSystemMount was originally added to allow using ReadableByteChannels
instead of InputStreams. However, as zip files do not allow seeking,
there is no benefit of using them over the original JarMount (which we
need to preserve for backwards compatibility).
Instead of maintaining two near-identical mounts, we remove the
FileSystemMount and rewrite the JarMount implementation with several
improvements:
- Rewrite the jar scanning algorithm to be closer to 1.13+'s data pack
mount. This means we no longer require the jar file to have
directories before the file (though this was not a problem in
practice).
- Add all JarMounts to a ReferenceQueue, closing up the ZipFile when
they have been garbage collected (fixes#100).
- Cache the contents of all files for 60 seconds (with some constraints
on size). This allows us to seek on ROM files too (assuming they are
small), by reading the whole thing into memory.
The cache is shared across all mounts, and has a 64MiB limit, and
thus should not have an adverse impact on memory.
- Only generate resource pack mounts if the desired directory exists.
- Allow mounting files, as well as directories (fixes#90).
As always, also a wee bit of cleanup to some of the surrounding code.
- Abstract peripheral ID and type checking into separate class
- Update peripherals directly rather than marking as invalid then
fetching from the network.
- Update peripherals when adjacent tiles change
This does result in a slightly more ugly interface, but reduces the
amount of work needed to perform partial updates of peripherals, such as
those done by neighbouring tile updates.