1
0
mirror of https://github.com/SquidDev-CC/CC-Tweaked synced 2024-06-14 01:06:48 +00:00
CC-Tweaked/src/main/java/dan200/computercraft/shared/peripheral/printer/PrinterPeripheral.java

132 lines
3.5 KiB
Java
Raw Normal View History

/*
* This file is part of ComputerCraft - http://www.computercraft.info
2020-01-01 00:09:18 +00:00
* Copyright Daniel Ratcliffe, 2011-2020. Do not distribute without permission.
* Send enquiries to dratcliffe@gmail.com
*/
package dan200.computercraft.shared.peripheral.printer;
import dan200.computercraft.api.lua.IArguments;
import dan200.computercraft.api.lua.LuaException;
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
import dan200.computercraft.api.lua.LuaFunction;
import dan200.computercraft.api.peripheral.IPeripheral;
import dan200.computercraft.core.terminal.Terminal;
import dan200.computercraft.shared.util.StringUtil;
2017-05-06 23:07:42 +00:00
import javax.annotation.Nonnull;
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
import java.util.Optional;
Generate documentation stubs from Javadocs illuaminate does not handle Java files, for obvious reasons. In order to get around that, we have a series of stub files within /doc/stub which mirrored the Java ones. While this works, it has a few problems: - The link to source code does not work - it just links to the stub file. - There's no guarantee that documentation remains consistent with the Java code. This change found several methods which were incorrectly documented beforehand. We now replace this with a custom Java doclet[1], which extracts doc comments from @LuaFunction annotated methods and generates stub-files from them. These also contain a @source annotation, which allows us to correctly link them back to the original Java code. There's some issues with this which have yet to be fixed. However, I don't think any of them are major blockers right now: - The custom doclet relies on Java 9 - I think it's /technically/ possible to do this on Java 8, but the API is significantly uglier. This means that we need to run javadoc on a separate JVM. This is possible, and it works locally and on CI, but is definitely not a nice approach. - illuaminate now requires the doc stubs to be generated in order for the linter to pass, which does make running the linter locally much harder (especially given the above bullet point). We could notionally include the generated stubs (or at least a cut down version of them) in the repo, but I'm not 100% sure about that. [1]: https://docs.oracle.com/javase/9/docs/api/jdk/javadoc/doclet/package-summary.html
2020-07-03 12:31:26 +00:00
/**
* The printer peripheral allows pages and books to be printed.
*
* @cc.module printer
*/
public class PrinterPeripheral implements IPeripheral
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
private final TilePrinter printer;
public PrinterPeripheral( TilePrinter printer )
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
this.printer = printer;
}
2017-05-06 23:07:42 +00:00
@Nonnull
@Override
public String getType()
{
return "printer";
}
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
// FIXME: There's a theoretical race condition here between getCurrentPage and then using the page. Ideally
// we'd lock on the page, consume it, and unlock.
// FIXME: None of our page modification functions actually mark the tile as dirty, so the page may not be
// persisted correctly.
@LuaFunction
public final void write( IArguments arguments ) throws LuaException
{
String text = StringUtil.toString( arguments.get( 0 ) );
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
Terminal page = getCurrentPage();
page.write( text );
page.setCursorPos( page.getCursorX() + text.length(), page.getCursorY() );
}
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
@LuaFunction
public final Object[] getCursorPos() throws LuaException
{
Terminal page = getCurrentPage();
int x = page.getCursorX();
int y = page.getCursorY();
return new Object[] { x + 1, y + 1 };
}
@LuaFunction
public final void setCursorPos( int x, int y ) throws LuaException
{
Terminal page = getCurrentPage();
page.setCursorPos( x - 1, y - 1 );
}
@LuaFunction
public final Object[] getPageSize() throws LuaException
{
Terminal page = getCurrentPage();
int width = page.getWidth();
int height = page.getHeight();
return new Object[] { width, height };
}
@LuaFunction( mainThread = true )
public final boolean newPage()
{
return printer.startNewPage();
}
@LuaFunction( mainThread = true )
public final boolean endPage() throws LuaException
{
getCurrentPage();
return printer.endCurrentPage();
}
@LuaFunction
public final void setPageTitle( Optional<String> title ) throws LuaException
{
getCurrentPage();
printer.setPageTitle( StringUtil.normaliseLabel( title.orElse( "" ) ) );
}
@LuaFunction
public final int getInkLevel()
{
return printer.getInkLevel();
}
@LuaFunction
public final int getPaperLevel()
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
return printer.getPaperLevel();
}
@Override
public boolean equals( IPeripheral other )
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
return other instanceof PrinterPeripheral && ((PrinterPeripheral) other).printer == printer;
}
@Nonnull
@Override
public Object getTarget()
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
return printer;
}
2019-04-02 11:45:54 +00:00
@Nonnull
private Terminal getCurrentPage() throws LuaException
{
Replace getMethodNames/callMethod with annotations (#447) When creating a peripheral or custom Lua object, one must implement two methods: - getMethodNames(): String[] - Returns the name of the methods - callMethod(int, ...): Object[] - Invokes the method using an index in the above array. This has a couple of problems: - It's somewhat unwieldy to use - you need to keep track of array indices, which leads to ugly code. - Functions which yield (for instance, those which run on the main thread) are blocking. This means we need to spawn new threads for each CC-side yield. We replace this system with a few changes: - @LuaFunction annotation: One may annotate a public instance method with this annotation. This then exposes a peripheral/lua object method. Furthermore, this method can accept and return a variety of types, which often makes functions cleaner (e.g. can return an int rather than an Object[], and specify and int argument rather than Object[]). - MethodResult: Instead of returning an Object[] and having blocking yields, functions return a MethodResult. This either contains an immediate return, or an instruction to yield with some continuation to resume with. MethodResult is then interpreted by the Lua runtime (i.e. Cobalt), rather than our weird bodgey hacks before. This means we no longer spawn new threads when yielding within CC. - Methods accept IArguments instead of a raw Object array. This has a few benefits: - Consistent argument handling - people no longer need to use ArgumentHelper (as it doesn't exist!), or even be aware of its existence - you're rather forced into using it. - More efficient code in some cases. We provide a Cobalt-specific implementation of IArguments, which avoids the boxing/unboxing when handling numbers and binary strings.
2020-05-15 12:21:16 +00:00
Terminal currentPage = printer.getCurrentPage();
2019-04-02 11:45:54 +00:00
if( currentPage == null ) throw new LuaException( "Page not started" );
return currentPage;
}
}