mirror of
https://github.com/osmarks/random-stuff
synced 2024-11-08 05:29:54 +00:00
Group theory for strings
This commit is contained in:
parent
72c242d0a9
commit
34a370f242
@ -58,3 +58,4 @@ This comes with absolutely no guarantee of support or correct function, although
|
|||||||
* `nn.sql` - half an RNN in SQLite, unfinished because it *apparently* can't do recursive common table expressions.
|
* `nn.sql` - half an RNN in SQLite, unfinished because it *apparently* can't do recursive common table expressions.
|
||||||
* `alexandergriffing_spite.py` - spites sometime by doing bad numerics in Python.
|
* `alexandergriffing_spite.py` - spites sometime by doing bad numerics in Python.
|
||||||
* `screensaver.html` - an attempt to replicate one of Apple's screensavers (incomplete).
|
* `screensaver.html` - an attempt to replicate one of Apple's screensavers (incomplete).
|
||||||
|
* `StringGroup.hs` - native Haskell strings are only a monoid, so I improved them to be a group instead.
|
60
StringGroup.hs
Normal file
60
StringGroup.hs
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
{-# LANGUAGE TemplateHaskell #-}
|
||||||
|
|
||||||
|
module StringGroup where
|
||||||
|
|
||||||
|
import Test.QuickCheck
|
||||||
|
|
||||||
|
data SChar = P Char | N Char deriving (Eq, Ord, Show)
|
||||||
|
newtype SString = SString [SChar] deriving (Eq, Ord, Show)
|
||||||
|
|
||||||
|
instance Arbitrary SChar where
|
||||||
|
arbitrary = oneof [fmap P arbitrary, fmap N arbitrary]
|
||||||
|
|
||||||
|
instance Arbitrary SString where
|
||||||
|
arbitrary = fmap (<> mempty) $ sized $ fmap SString . vector
|
||||||
|
|
||||||
|
instance Semigroup SString where
|
||||||
|
(SString xs) <> (SString ys) = SString (reverse $ go zs [])
|
||||||
|
where
|
||||||
|
zs = xs <> ys
|
||||||
|
go [] acc = acc
|
||||||
|
go ((N x):xs) ((P y):ys)
|
||||||
|
| x == y = go xs ys
|
||||||
|
| otherwise = go xs (N x:P y:ys)
|
||||||
|
go ((P x):xs) ((N y):ys)
|
||||||
|
| x == y = go xs ys
|
||||||
|
| otherwise = go xs (P x:N y:ys)
|
||||||
|
go (x:xs) acc = go xs (x:acc)
|
||||||
|
|
||||||
|
concat' [] [] = []
|
||||||
|
concat' [] ys = ys
|
||||||
|
concat' xs [] = xs
|
||||||
|
concat' (x:xs) ys = x:concat' xs ys
|
||||||
|
|
||||||
|
instance Monoid SString where
|
||||||
|
mempty = SString []
|
||||||
|
|
||||||
|
positive = SString . map P
|
||||||
|
negateSChar (P x) = N x
|
||||||
|
negateSChar (N x) = P x
|
||||||
|
inverse (SString s) = SString $ reverse $ map negateSChar s
|
||||||
|
|
||||||
|
prop_associative :: SString -> SString -> SString -> Bool
|
||||||
|
prop_associative xs ys zs = (xs <> ys) <> zs == xs <> (ys <> zs)
|
||||||
|
prop_leftIdentity :: SString -> Bool
|
||||||
|
prop_leftIdentity xs = mempty <> xs == xs
|
||||||
|
prop_rightIdentity :: SString -> Bool
|
||||||
|
prop_rightIdentity xs = xs <> mempty == xs
|
||||||
|
prop_leftInverse xs = inverse xs <> xs == mempty
|
||||||
|
prop_rightInverse xs = xs <> inverse xs == mempty
|
||||||
|
|
||||||
|
return []
|
||||||
|
tests = $forAllProperties $
|
||||||
|
quickCheckWithResult (stdArgs {maxSuccess = 10000})
|
||||||
|
|
||||||
|
main = do
|
||||||
|
let x = positive "hello world!"
|
||||||
|
let y = inverse $ positive " world!"
|
||||||
|
print (x <> y)
|
||||||
|
|
||||||
|
tests
|
Loading…
Reference in New Issue
Block a user