mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
Use bf16 only if supported
This commit is contained in:
parent
7fe4a099ad
commit
eb33b8bf1c
2
bench.py
2
bench.py
@ -15,7 +15,7 @@ bias = False
|
||||
real_data = True
|
||||
seed = 1337
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||
profile = False # use pytorch profiler, or just simple benchmarking?
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
|
@ -18,7 +18,7 @@ temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, i
|
||||
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
||||
seed = 1337
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
||||
compile = False # use PyTorch 2.0 to compile the model to be faster
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
2
train.py
2
train.py
@ -70,7 +70,7 @@ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchi
|
||||
backend = 'nccl' # 'nccl', 'gloo', etc.
|
||||
# system
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
||||
dtype = 'bfloat16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
||||
dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||
# -----------------------------------------------------------------------------
|
||||
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
||||
|
Loading…
Reference in New Issue
Block a user