1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-12-18 14:10:28 +00:00

reshuffle args inside sample.py

This commit is contained in:
Andrej Karpathy 2023-01-02 02:11:39 +00:00
parent ec9b1f8182
commit ea4de192e0

View File

@ -6,33 +6,45 @@ import torch
import tiktoken
from model import GPTConfig, GPT
# -----------------------------------------------------------------------------
# todo make these overridable like in train.py
out_dir = 'out'
device = 'cuda:2'
torch.manual_seed(1337)
compile = False
start = "\n" # or "<|endoftext|>" or whatever you like
num_samples = 10 # number of samples to draw
max_new_tokens = 500 # number of tokens generated in each sample
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
# -----------------------------------------------------------------------------
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
out_dir = 'out'
# model
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
# model
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
model.load_state_dict(checkpoint['model'])
model.eval()
model.to(device)
#model = torch.compile(model) # requires PyTorch 2.0 (optional)
if compile:
model = torch.compile(model) # requires PyTorch 2.0 (optional)
# encode the beginning of the prompt
enc = tiktoken.get_encoding("gpt2")
start = enc.encode("\n") # user choice on what token to start with
#start = [enc.eot_token]
x = (torch.tensor(start, dtype=torch.long, device=device)[None, ...])
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
for k in range(10):
for k in range(num_samples):
with torch.no_grad():
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
y = model.generate(x, 500, temperature=0.8, top_k=200)
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
print(enc.decode(y[0].tolist()))
print('---------------')