mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 05:02:53 +00:00
reshuffle args inside sample.py
This commit is contained in:
parent
ec9b1f8182
commit
ea4de192e0
32
sample.py
32
sample.py
@ -6,33 +6,45 @@ import torch
|
||||
import tiktoken
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# todo make these overridable like in train.py
|
||||
out_dir = 'out'
|
||||
device = 'cuda:2'
|
||||
torch.manual_seed(1337)
|
||||
compile = False
|
||||
start = "\n" # or "<|endoftext|>" or whatever you like
|
||||
num_samples = 10 # number of samples to draw
|
||||
max_new_tokens = 500 # number of tokens generated in each sample
|
||||
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
|
||||
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
||||
seed = 1337
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
|
||||
out_dir = 'out'
|
||||
# model
|
||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||
|
||||
# model
|
||||
gptconf = GPTConfig(**checkpoint['model_args'])
|
||||
model = GPT(gptconf)
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
model.eval()
|
||||
model.to(device)
|
||||
#model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
||||
if compile:
|
||||
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
||||
|
||||
# encode the beginning of the prompt
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
start = enc.encode("\n") # user choice on what token to start with
|
||||
#start = [enc.eot_token]
|
||||
x = (torch.tensor(start, dtype=torch.long, device=device)[None, ...])
|
||||
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
||||
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
||||
|
||||
for k in range(10):
|
||||
for k in range(num_samples):
|
||||
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
y = model.generate(x, 500, temperature=0.8, top_k=200)
|
||||
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
||||
|
||||
print(enc.decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
|
Loading…
Reference in New Issue
Block a user