mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 13:12:53 +00:00
bunch of plumbing of bias all around. measuring bias=False to be about 6% faster
This commit is contained in:
parent
cc5444e194
commit
e808a67149
2
bench.py
2
bench.py
@ -11,6 +11,7 @@ from model import GPTConfig, GPT
|
||||
# -----------------------------------------------------------------------------
|
||||
batch_size = 8
|
||||
block_size = 1024
|
||||
bias = True
|
||||
seed = 1337
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
@ -50,6 +51,7 @@ gptconf = GPTConfig(
|
||||
block_size = block_size, # how far back does the model look? i.e. context size
|
||||
n_layer = 12, n_head = 12, n_embd = 768, # size of the model
|
||||
dropout = 0, # for determinism
|
||||
bias = bias,
|
||||
)
|
||||
model = GPT(gptconf)
|
||||
model.to(device)
|
||||
|
4
model.py
4
model.py
@ -108,7 +108,7 @@ class GPTConfig:
|
||||
n_layer: int = 12
|
||||
n_head: int = 12
|
||||
n_embd: int = 768
|
||||
dropout: float = 0.1
|
||||
dropout: float = 0.0
|
||||
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
||||
|
||||
class GPT(nn.Module):
|
||||
@ -215,7 +215,7 @@ class GPT(nn.Module):
|
||||
# later, by calling crop_block_size()
|
||||
|
||||
# create a from-scratch initialized minGPT model
|
||||
config = GPTConfig(block_size=1024, **config_args)
|
||||
config = GPTConfig(block_size=1024, bias=True, **config_args) # note: force bias=True, as in gpt2 models
|
||||
model = GPT(config)
|
||||
sd = model.state_dict()
|
||||
|
||||
|
5
train.py
5
train.py
@ -53,6 +53,7 @@ n_layer = 12
|
||||
n_head = 12
|
||||
n_embd = 768
|
||||
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
||||
bias = False # do we use bias inside LayerNorm and Linear layers?
|
||||
# adamw optimizer
|
||||
learning_rate = 6e-4 # max learning rate
|
||||
max_iters = 600000 # total number of training iterations
|
||||
@ -129,7 +130,8 @@ else:
|
||||
vocab_size = 50257
|
||||
|
||||
# model init
|
||||
model_args = dict(n_layer = n_layer, n_head = n_head, n_embd = n_embd, block_size = block_size, dropout = dropout, vocab_size = vocab_size)
|
||||
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
|
||||
dropout=dropout, vocab_size=vocab_size, bias=bias)
|
||||
if init_from == 'scratch':
|
||||
# init a new model from scratch
|
||||
print("Initializing a new model from scratch")
|
||||
@ -158,6 +160,7 @@ elif init_from == 'resume':
|
||||
best_val_loss = checkpoint['best_val_loss']
|
||||
elif init_from.startswith('gpt2'):
|
||||
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
||||
assert bias, "GPT-2 models have bias, so we can't use bias=False"
|
||||
# initialize from OpenAI GPT-2 weights
|
||||
override_args = dict(dropout=dropout)
|
||||
model = GPT.from_pretrained(init_from, override_args)
|
||||
|
Loading…
Reference in New Issue
Block a user