1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2025-01-18 13:12:53 +00:00

bunch of plumbing of bias all around. measuring bias=False to be about 6% faster

This commit is contained in:
Andrej Karpathy 2023-01-27 20:41:17 +00:00
parent cc5444e194
commit e808a67149
3 changed files with 8 additions and 3 deletions

View File

@ -11,6 +11,7 @@ from model import GPTConfig, GPT
# -----------------------------------------------------------------------------
batch_size = 8
block_size = 1024
bias = True
seed = 1337
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
@ -50,6 +51,7 @@ gptconf = GPTConfig(
block_size = block_size, # how far back does the model look? i.e. context size
n_layer = 12, n_head = 12, n_embd = 768, # size of the model
dropout = 0, # for determinism
bias = bias,
)
model = GPT(gptconf)
model.to(device)

View File

@ -108,7 +108,7 @@ class GPTConfig:
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.1
dropout: float = 0.0
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
class GPT(nn.Module):
@ -215,7 +215,7 @@ class GPT(nn.Module):
# later, by calling crop_block_size()
# create a from-scratch initialized minGPT model
config = GPTConfig(block_size=1024, **config_args)
config = GPTConfig(block_size=1024, bias=True, **config_args) # note: force bias=True, as in gpt2 models
model = GPT(config)
sd = model.state_dict()

View File

@ -53,6 +53,7 @@ n_layer = 12
n_head = 12
n_embd = 768
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
bias = False # do we use bias inside LayerNorm and Linear layers?
# adamw optimizer
learning_rate = 6e-4 # max learning rate
max_iters = 600000 # total number of training iterations
@ -129,7 +130,8 @@ else:
vocab_size = 50257
# model init
model_args = dict(n_layer = n_layer, n_head = n_head, n_embd = n_embd, block_size = block_size, dropout = dropout, vocab_size = vocab_size)
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
dropout=dropout, vocab_size=vocab_size, bias=bias)
if init_from == 'scratch':
# init a new model from scratch
print("Initializing a new model from scratch")
@ -158,6 +160,7 @@ elif init_from == 'resume':
best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
assert bias, "GPT-2 models have bias, so we can't use bias=False"
# initialize from OpenAI GPT-2 weights
override_args = dict(dropout=dropout)
model = GPT.from_pretrained(init_from, override_args)