mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
add support for character-level language models, a new character-level shakespeare dataset, a new config file that shows how to train a character-level baby GPT on it, and adjust the sample function to figure out if it should decode with characters or GPT2 bpe tokens. The current implementation is a bit hacky and basically assumes just these two possibilities. In the future we may want to support more general encoders or decoders.
This commit is contained in:
parent
c2a402f7f7
commit
d17350a31d
36
config/train_shakespeare_char.py
Normal file
36
config/train_shakespeare_char.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
# train a miniature character-level shakespeare model
|
||||||
|
# good for debugging and playing on macbooks and such
|
||||||
|
|
||||||
|
out_dir = 'out-shakespeare-char'
|
||||||
|
eval_interval = 250 # keep frequent because we'll overfit
|
||||||
|
eval_iters = 200
|
||||||
|
log_interval = 10 # don't print too too often
|
||||||
|
|
||||||
|
# we expect to overfit on this small dataset, so only save when val improves
|
||||||
|
always_save_checkpoint = True
|
||||||
|
|
||||||
|
wandb_log = False # override via command line if you like
|
||||||
|
wandb_project = 'shakespeare-char'
|
||||||
|
wandb_run_name = 'mini-gpt'
|
||||||
|
|
||||||
|
dataset = 'shakespeare_char'
|
||||||
|
batch_size = 64
|
||||||
|
block_size = 128 # context of up to 128 previous characters
|
||||||
|
|
||||||
|
# baby GPT model :)
|
||||||
|
n_layer = 4
|
||||||
|
n_head = 4
|
||||||
|
n_embd = 128
|
||||||
|
dropout = 0.0
|
||||||
|
|
||||||
|
learning_rate = 1e-3 # with baby networks can afford to go a bit higher
|
||||||
|
max_iters = 5000
|
||||||
|
lr_decay_iters = 5000 # make equal to max_iters usually
|
||||||
|
min_lr = 1e-4 # learning_rate / 10 usually
|
||||||
|
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
|
||||||
|
|
||||||
|
warmup_iters = 100 # not super necessary potentially
|
||||||
|
|
||||||
|
# on macbook also add
|
||||||
|
# device = 'cpu' # run on cpu only
|
||||||
|
# compile = False # do not torch compile the model
|
67
data/shakespeare_char/prepare.py
Normal file
67
data/shakespeare_char/prepare.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
"""
|
||||||
|
Prepare the Shakespeare dataset for character-level language modeling.
|
||||||
|
So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
|
||||||
|
Will save train.bin, val.bin containing the ids, and meta.pkl containing the
|
||||||
|
encoder and decoder and some other related info.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import requests
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# download the tiny shakespeare dataset
|
||||||
|
if not os.path.exists('input.txt'):
|
||||||
|
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
||||||
|
with open('input.txt', 'w') as f:
|
||||||
|
f.write(requests.get(data_url).text)
|
||||||
|
|
||||||
|
with open('input.txt', 'r') as f:
|
||||||
|
data = f.read()
|
||||||
|
print("length of dataset in characters: ", len(data))
|
||||||
|
|
||||||
|
# get all the unique characters that occur in this text
|
||||||
|
chars = sorted(list(set(data)))
|
||||||
|
vocab_size = len(chars)
|
||||||
|
print("all the unique characters:", ''.join(chars))
|
||||||
|
print("vocab size:", vocab_size)
|
||||||
|
|
||||||
|
# create a mapping from characters to integers
|
||||||
|
stoi = { ch:i for i,ch in enumerate(chars) }
|
||||||
|
itos = { i:ch for i,ch in enumerate(chars) }
|
||||||
|
def encode(s):
|
||||||
|
return [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
||||||
|
def decode(l):
|
||||||
|
''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
||||||
|
|
||||||
|
# create the train and test splits
|
||||||
|
n = len(data)
|
||||||
|
train_data = data[:int(n*0.9)]
|
||||||
|
val_data = data[int(n*0.9):]
|
||||||
|
|
||||||
|
# encode both to integers
|
||||||
|
train_ids = encode(train_data)
|
||||||
|
val_ids = encode(val_data)
|
||||||
|
print(f"train has {len(train_ids)} tokens")
|
||||||
|
print(f"val has {len(val_ids)} tokens")
|
||||||
|
|
||||||
|
# export to bin files
|
||||||
|
train_ids = np.array(train_ids, dtype=np.uint16)
|
||||||
|
val_ids = np.array(val_ids, dtype=np.uint16)
|
||||||
|
train_ids.tofile('train.bin')
|
||||||
|
val_ids.tofile('val.bin')
|
||||||
|
|
||||||
|
# save the meta information as well, to help us encode/decode later
|
||||||
|
meta = {
|
||||||
|
'vocab_size': vocab_size,
|
||||||
|
'itos': itos,
|
||||||
|
'stoi': stoi,
|
||||||
|
}
|
||||||
|
with open('meta.pkl', 'wb') as f:
|
||||||
|
pickle.dump(meta, f)
|
||||||
|
|
||||||
|
# length of dataset in characters: 1115394
|
||||||
|
# all the unique characters:
|
||||||
|
# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
|
||||||
|
# vocab size: 65
|
||||||
|
# train has 1003854 tokens
|
||||||
|
# val has 111540 tokens
|
9
data/shakespeare_char/readme.md
Normal file
9
data/shakespeare_char/readme.md
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
|
||||||
|
# tiny shakespeare, character-level
|
||||||
|
|
||||||
|
Tiny shakespeare, of the good old char-rnn fame :) Treated on character-level.
|
||||||
|
|
||||||
|
After running `prepare.py`:
|
||||||
|
|
||||||
|
- train.bin has 1,003,854 tokens
|
||||||
|
- val.bin has 111,540 tokens
|
26
sample.py
26
sample.py
@ -2,6 +2,7 @@
|
|||||||
Sample from a trained model
|
Sample from a trained model
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
|
import pickle
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
import torch
|
import torch
|
||||||
import tiktoken
|
import tiktoken
|
||||||
@ -45,9 +46,28 @@ model.to(device)
|
|||||||
if compile:
|
if compile:
|
||||||
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
||||||
|
|
||||||
|
# look for the meta pickle in case it is available in the dataset folder
|
||||||
|
load_meta = False
|
||||||
|
if 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
||||||
|
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
||||||
|
load_meta = os.path.exists(meta_path)
|
||||||
|
if load_meta:
|
||||||
|
print(f"Loading meta from {meta_path}...")
|
||||||
|
with open(meta_path, 'rb') as f:
|
||||||
|
meta = pickle.load(f)
|
||||||
|
# TODO want to make this more general to arbitrary encoder/decoder schemes
|
||||||
|
stoi, itos = meta['stoi'], meta['itos']
|
||||||
|
encode = lambda s: [stoi[c] for c in s]
|
||||||
|
decode = lambda l: ''.join([itos[i] for i in l])
|
||||||
|
else:
|
||||||
|
# ok let's assume gpt-2 encodings by default
|
||||||
|
print("No meta.pkl found, assuming GPT-2 encodings...")
|
||||||
|
enc = tiktoken.get_encoding("gpt2")
|
||||||
|
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
|
||||||
|
decode = lambda l: enc.decode(l)
|
||||||
|
|
||||||
# encode the beginning of the prompt
|
# encode the beginning of the prompt
|
||||||
enc = tiktoken.get_encoding("gpt2")
|
start_ids = encode(start)
|
||||||
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
|
||||||
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
||||||
|
|
||||||
# run generation
|
# run generation
|
||||||
@ -55,5 +75,5 @@ with torch.no_grad():
|
|||||||
with ctx:
|
with ctx:
|
||||||
for k in range(num_samples):
|
for k in range(num_samples):
|
||||||
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
||||||
print(enc.decode(y[0].tolist()))
|
print(decode(y[0].tolist()))
|
||||||
print('---------------')
|
print('---------------')
|
||||||
|
1
train.py
1
train.py
@ -225,6 +225,7 @@ while True:
|
|||||||
'model_args': model_args,
|
'model_args': model_args,
|
||||||
'iter_num': iter_num,
|
'iter_num': iter_num,
|
||||||
'best_val_loss': best_val_loss,
|
'best_val_loss': best_val_loss,
|
||||||
|
'config': config,
|
||||||
}
|
}
|
||||||
print(f"saving checkpoint to {out_dir}")
|
print(f"saving checkpoint to {out_dir}")
|
||||||
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
||||||
|
Loading…
Reference in New Issue
Block a user