mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 06:00:29 +00:00
add support for character-level language models, a new character-level shakespeare dataset, a new config file that shows how to train a character-level baby GPT on it, and adjust the sample function to figure out if it should decode with characters or GPT2 bpe tokens. The current implementation is a bit hacky and basically assumes just these two possibilities. In the future we may want to support more general encoders or decoders.
This commit is contained in:
parent
c2a402f7f7
commit
d17350a31d
36
config/train_shakespeare_char.py
Normal file
36
config/train_shakespeare_char.py
Normal file
@ -0,0 +1,36 @@
|
||||
# train a miniature character-level shakespeare model
|
||||
# good for debugging and playing on macbooks and such
|
||||
|
||||
out_dir = 'out-shakespeare-char'
|
||||
eval_interval = 250 # keep frequent because we'll overfit
|
||||
eval_iters = 200
|
||||
log_interval = 10 # don't print too too often
|
||||
|
||||
# we expect to overfit on this small dataset, so only save when val improves
|
||||
always_save_checkpoint = True
|
||||
|
||||
wandb_log = False # override via command line if you like
|
||||
wandb_project = 'shakespeare-char'
|
||||
wandb_run_name = 'mini-gpt'
|
||||
|
||||
dataset = 'shakespeare_char'
|
||||
batch_size = 64
|
||||
block_size = 128 # context of up to 128 previous characters
|
||||
|
||||
# baby GPT model :)
|
||||
n_layer = 4
|
||||
n_head = 4
|
||||
n_embd = 128
|
||||
dropout = 0.0
|
||||
|
||||
learning_rate = 1e-3 # with baby networks can afford to go a bit higher
|
||||
max_iters = 5000
|
||||
lr_decay_iters = 5000 # make equal to max_iters usually
|
||||
min_lr = 1e-4 # learning_rate / 10 usually
|
||||
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
|
||||
|
||||
warmup_iters = 100 # not super necessary potentially
|
||||
|
||||
# on macbook also add
|
||||
# device = 'cpu' # run on cpu only
|
||||
# compile = False # do not torch compile the model
|
67
data/shakespeare_char/prepare.py
Normal file
67
data/shakespeare_char/prepare.py
Normal file
@ -0,0 +1,67 @@
|
||||
"""
|
||||
Prepare the Shakespeare dataset for character-level language modeling.
|
||||
So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
|
||||
Will save train.bin, val.bin containing the ids, and meta.pkl containing the
|
||||
encoder and decoder and some other related info.
|
||||
"""
|
||||
import os
|
||||
import pickle
|
||||
import requests
|
||||
import numpy as np
|
||||
|
||||
# download the tiny shakespeare dataset
|
||||
if not os.path.exists('input.txt'):
|
||||
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
||||
with open('input.txt', 'w') as f:
|
||||
f.write(requests.get(data_url).text)
|
||||
|
||||
with open('input.txt', 'r') as f:
|
||||
data = f.read()
|
||||
print("length of dataset in characters: ", len(data))
|
||||
|
||||
# get all the unique characters that occur in this text
|
||||
chars = sorted(list(set(data)))
|
||||
vocab_size = len(chars)
|
||||
print("all the unique characters:", ''.join(chars))
|
||||
print("vocab size:", vocab_size)
|
||||
|
||||
# create a mapping from characters to integers
|
||||
stoi = { ch:i for i,ch in enumerate(chars) }
|
||||
itos = { i:ch for i,ch in enumerate(chars) }
|
||||
def encode(s):
|
||||
return [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
||||
def decode(l):
|
||||
''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
||||
|
||||
# create the train and test splits
|
||||
n = len(data)
|
||||
train_data = data[:int(n*0.9)]
|
||||
val_data = data[int(n*0.9):]
|
||||
|
||||
# encode both to integers
|
||||
train_ids = encode(train_data)
|
||||
val_ids = encode(val_data)
|
||||
print(f"train has {len(train_ids)} tokens")
|
||||
print(f"val has {len(val_ids)} tokens")
|
||||
|
||||
# export to bin files
|
||||
train_ids = np.array(train_ids, dtype=np.uint16)
|
||||
val_ids = np.array(val_ids, dtype=np.uint16)
|
||||
train_ids.tofile('train.bin')
|
||||
val_ids.tofile('val.bin')
|
||||
|
||||
# save the meta information as well, to help us encode/decode later
|
||||
meta = {
|
||||
'vocab_size': vocab_size,
|
||||
'itos': itos,
|
||||
'stoi': stoi,
|
||||
}
|
||||
with open('meta.pkl', 'wb') as f:
|
||||
pickle.dump(meta, f)
|
||||
|
||||
# length of dataset in characters: 1115394
|
||||
# all the unique characters:
|
||||
# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
|
||||
# vocab size: 65
|
||||
# train has 1003854 tokens
|
||||
# val has 111540 tokens
|
9
data/shakespeare_char/readme.md
Normal file
9
data/shakespeare_char/readme.md
Normal file
@ -0,0 +1,9 @@
|
||||
|
||||
# tiny shakespeare, character-level
|
||||
|
||||
Tiny shakespeare, of the good old char-rnn fame :) Treated on character-level.
|
||||
|
||||
After running `prepare.py`:
|
||||
|
||||
- train.bin has 1,003,854 tokens
|
||||
- val.bin has 111,540 tokens
|
28
sample.py
28
sample.py
@ -2,6 +2,7 @@
|
||||
Sample from a trained model
|
||||
"""
|
||||
import os
|
||||
import pickle
|
||||
from contextlib import nullcontext
|
||||
import torch
|
||||
import tiktoken
|
||||
@ -45,9 +46,28 @@ model.to(device)
|
||||
if compile:
|
||||
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
||||
|
||||
# look for the meta pickle in case it is available in the dataset folder
|
||||
load_meta = False
|
||||
if 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
||||
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
||||
load_meta = os.path.exists(meta_path)
|
||||
if load_meta:
|
||||
print(f"Loading meta from {meta_path}...")
|
||||
with open(meta_path, 'rb') as f:
|
||||
meta = pickle.load(f)
|
||||
# TODO want to make this more general to arbitrary encoder/decoder schemes
|
||||
stoi, itos = meta['stoi'], meta['itos']
|
||||
encode = lambda s: [stoi[c] for c in s]
|
||||
decode = lambda l: ''.join([itos[i] for i in l])
|
||||
else:
|
||||
# ok let's assume gpt-2 encodings by default
|
||||
print("No meta.pkl found, assuming GPT-2 encodings...")
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
|
||||
decode = lambda l: enc.decode(l)
|
||||
|
||||
# encode the beginning of the prompt
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
|
||||
start_ids = encode(start)
|
||||
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
||||
|
||||
# run generation
|
||||
@ -55,5 +75,5 @@ with torch.no_grad():
|
||||
with ctx:
|
||||
for k in range(num_samples):
|
||||
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
||||
print(enc.decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
print(decode(y[0].tolist()))
|
||||
print('---------------')
|
||||
|
Loading…
Reference in New Issue
Block a user