mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
Pin memory only when training on GPU
This commit is contained in:
parent
77e7e04c26
commit
b8286f343e
7
train.py
7
train.py
@ -113,7 +113,12 @@ def get_batch(split):
|
||||
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
||||
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
||||
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
||||
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
||||
if "cuda" in device:
|
||||
# GPU training
|
||||
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
||||
else:
|
||||
# CPU or MPS training
|
||||
x, y = x.to(device), y.to(device)
|
||||
return x, y
|
||||
|
||||
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
|
||||
|
Loading…
Reference in New Issue
Block a user